Assessment report on *Thymus vulgaris* L., *Thymus zygis* L., aetheroleum
Draft – Revision 1

Based on Article 16d(1), Article 16f and Article 16h of Directive 2001/83/EC (traditional use)

<table>
<thead>
<tr>
<th>Herbal substance(s) (binomial scientific name of the plant, including plant part)</th>
<th>not applicable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Herbal preparation(s)</td>
<td>Thymus vulgaris L., Thymus zygis L., aetheroleum</td>
</tr>
<tr>
<td>Pharmaceutical form(s)</td>
<td>In liquid dosage forms for oral use and in liquid or semi-solid dosage forms for cutaneous use and use as a bath additive</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>First assessment</th>
<th>Rapporteur(s)</th>
<th>Peer-reviewer</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>R Länger</td>
<td>U Claeson</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Revision</th>
<th>Rapporteur(s)</th>
<th>Peer-reviewer</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>I Kosalec</td>
<td>C Cavaleiro</td>
</tr>
</tbody>
</table>

Note: This draft assessment report is published to support the public consultation of the draft European Union herbal monograph on *Thymus vulgaris* L., *Thymus zygis* L., aetheroleum. It is a working document, not yet edited, and shall be further developed after the release for consultation of the monograph. Interested parties are welcome to submit comments to the HMPC secretariat, which will be taken into consideration but no ‘overview of comments received during the public consultation’ will be prepared on comments that will be received on this assessment report. The publication of this draft assessment report has been agreed to facilitate the understanding by Interested Parties of the assessment that has been carried out so far and led to the preparation of the draft monograph.
Table of contents:

1. Introduction

1.1. Description of the herbal substance(s), herbal preparation(s) or combinations thereof

1.2. Search and assessment methodology

2. Data on medicinal use

2.1. Information about products on the market

2.1.1. Information about products on the market in the EU/EEA Member States

2.1.2. Information on products on the market outside the EU/EEA

2.2. Information on documented medicinal use and historical data from literature

2.3. Overall conclusions on medicinal use

3. Non-Clinical Data

3.1. Overview of available pharmacological data regarding the herbal substance(s), herbal preparation(s) and relevant constituents thereof

3.1.1. Primary pharmacodynamics

3.1.2. Secondary pharmacodynamics

3.1.3. Safety pharmacology

3.1.4. Pharmacodynamic interactions

3.1.5. Conclusions

3.2. Overview of available pharmacokinetic data regarding the herbal substance(s), herbal preparation(s) and relevant constituents thereof

3.3. Overview of available toxicological data regarding the herbal substance(s)/herbal preparation(s) and constituents thereof

3.3.1. Single dose toxicity

3.3.2. Repeat dose toxicity

3.3.3. Genotoxicity

3.3.4. Carcinogenicity

3.3.5. Reproductive and developmental toxicity

3.3.6. Local tolerance

3.3.7. Other special studies

3.3.8. Conclusions

3.4. Overall conclusions on non-clinical data

4. Clinical Data

4.1. Clinical pharmacology

4.1.1. Overview of pharmacodynamic data regarding the herbal substance(s)/preparation(s) including data on relevant constituents

4.1.2. Overview of pharmacokinetic data regarding the herbal substance(s)/preparation(s) including data on relevant constituents

4.2. Clinical efficacy

4.2.1. Dose response studies

4.2.2. Clinical studies (case studies and clinical trials)

4.3. Clinical studies in special populations (e.g. elderly and children)

4.4. Overall conclusions on clinical pharmacology and efficacy

5. Clinical Safety/Pharmacovigilance

5.1. Overview of toxicological/safety data from clinical trials in humans
5.2. Patient exposure .. 26
5.3. Adverse events, serious adverse events and deaths..26
5.4. Laboratory findings..27
5.5. Safety in special populations and situations ...27
5.5.1. Use in children and adolescents...27
5.5.2. Contraindications...27
5.5.3. Special Warnings and precautions for use..27
5.5.4. Drug interactions and other forms of interaction ...27
5.5.5. Fertility, pregnancy and lactation..27
5.5.6. Overdose..27
5.5.7. Effects on ability to drive or operate machinery or impairment of mental ability28
5.5.8. Safety in other special situations ..28
5.6. Overall conclusions on clinical safety...28

6. Overall conclusions (benefit-risk assessment)...28

Annex ..29
1. Introduction

1.1. Description of the herbal substance(s), herbal preparation(s) or combinations thereof

Herbal substances:
Not applicable.

Herbal preparation(s):
Thyme essential oil (= thyme oil; latin: Thymi typo thymolo aetherolum).

Definition:
Essential oil obtained by steam distillation from the fresh flowering aerial parts of Thymus vulgaris L., T. zygis L. or a mixture of both species (Pharm. Eur. 9 Monograph 01/2012:1374).

Appearance:
Clear, yellow or very dark reddish-brown, mobile liquid. Odor reminiscent of thymol (Pharm. Eur. 9 Monograph 01/2012:1374).
Commercially the crude thyme oil is called "red thyme oil" because of its deep colour. After redistillation "white thyme oil", a light-yellow oil, which smells similarly but sweeter and less pungent is obtained (Böhme et al. 2008).

Composition:
Essential oil: there are at least 6 chemotypes of Thymus vulgaris L. (Thompson et al. 2003) with different compositions of the essential oil; only the 'thymol'-type with thymol as predominant compound complies with the definition in the European Pharmacopoeia. The dried herbal substance contains up to 2.5% essential oil; the main components are thymol, p-cymene, carvacrol, γ -terpinene, linalool, β - myrcene, terpinen-4-ol. Some compounds occur partly as glycosides (e.g. p-cymene-9-ol (Takeuchi et al. 2004, Kitajima et al. 2004, Stahl-Biskup 1991).

Composition and limits of the compounds according to Pharm. Eur. Monograph:
- α-Thujene: 0.2 per cent to 1.5 per cent,
- β-Myrcene: 1.0 per cent to 3.0 per cent,
- α-Terpinene: 0.9 per cent to 2.6 per cent,
- p-Cymene: 14.0 per cent to 28.0 per cent,
- γ-Terpinene: 4.0 per cent to 12.0 per cent,
- Linalool: 1.5 per cent to 6.5 per cent,
- Terpinen-4-ol: 0.1 per cent to 2.5 per cent,
- Carvacrol methyl ether: 0.05 per cent to 1.5 per cent,
- Thymol: 37.0 per cent to 55.0 per cent,
- Carvacrol: 0.5 per cent to 5.5 per cent.
1.2. Search and assessment methodology

The revision of the Monograph on thyme oil (Thymi aetheroleum; *Thymus vulgaris* L., *Thymus zygis* L., aetheroleum) was conducted according to the guideline "Procedure for the systematic review of European Union herbal monographs and/or European Union list entries and supporting documents", EMA/HMPC/124695/2011 Rev. 1 published on 28 January 2015.

The call for scientific data for the systematic review of the monograph on Thymi aetheroleum started on 15 April 2016 and ended on 15 July 2016\(^2\). During the period of public call for scientific data no data was received.

Most of the EU Member States respond to the call for exchange of information regarding the new data on medicinal products marketed or combination of medicinal products or other relevant products in particular Member State.

Search for the peer-review scientific articles and review articles was performed using PUBMED, TOXLINE and SCOPUS scientific bases during the September and November 2016 with key words: *thyme oil, thymus essential oil*.

Search engines used: GOOGLE SCHOLAR
Scientific databases: PUBMED, SCOPUS, MEDLINE
Toxicological databases: TOXLINE
Pharmacovigilance resources: WHO Global ICSR database (VigiBase), EudraVigilance database.

2. Data on medicinal use

2.1. Information about products on the market

2.1.1. Information about products on the market in the EU/EEA Member States

Information on medicinal products marketed in the EU/EEA

The overview of data obtained from marketed medicinal products in EU/EEA is presented in table 1.

Table 1: Overview of data obtained from marketed medicinal products

<table>
<thead>
<tr>
<th>Active substance</th>
<th>Indication</th>
<th>Pharmaceutical form</th>
<th>Regulatory Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thymi aetheroleum</td>
<td>Traditional herbal medical product for the relief of symptoms in coughs and colds with viscous mucus.</td>
<td>bath additive 8.44 g thyme oil in 100 ml (= 105.5 g) bath additive. Children ≧ 2 years and adults: 20 ml bath additive/100 l water for 10-20 min at 35-38°C if necessary 1 x daily</td>
<td>At least since 1976, Germany, WEU</td>
</tr>
<tr>
<td>Thymi aetheroleum</td>
<td>Traditional herbal medical product for the relief of symptoms in coughs and colds.</td>
<td>bath additive 5.0 g thyme oil in 100 g bath additive. Children ≧ 2 years and < 6 years: 5 ml bath additive/40-50 l water. Children 6-12 years: 10 ml bath additive/50 - 60 l water. Children ≧ 12 years and adults: 20 ml bath additive/100 l water for 10-20 min at 35-38°C 3-4 x weekly</td>
<td>At least since 1990, Germany, WEU</td>
</tr>
<tr>
<td>Thymi aetheroleum</td>
<td>Traditional herbal medical product for the relief of symptoms in coughs and colds with viscous mucus.</td>
<td>bath additive 6.0 g thyme oil in 100 g (= 95.2 ml) bath additive. Children ≧ 2 years and adults: 20 g bath additive/100 l water for 15 min at 35-38°C max. 1 x daily</td>
<td>At least since 1976, Germany, WEU</td>
</tr>
<tr>
<td>Thymi aetheroleum</td>
<td>Traditional herbal medical product for the relief of symptoms in coughs and colds with viscous mucus.</td>
<td>bath additive 8.0 g thyme oil in 100 g (= 95 ml) bath additive. Children ≧ 6 month and < 2 years: 2.5 ml bath additive/30 l water. Children ≧ 2 years and < 6 years: 5 ml bath additive/40 – 50 l water. Children 6-12 years: 10 ml bath additive/50-60 l water. Children ≧ 12 years and adults: 20-30 ml bath</td>
<td>At least since 1976, Germany, WEU</td>
</tr>
<tr>
<td>Active substance</td>
<td>Indication</td>
<td>Pharmaceutical form</td>
<td>Regulatory Status</td>
</tr>
<tr>
<td>------------------</td>
<td>------------</td>
<td>---------------------</td>
<td>------------------</td>
</tr>
<tr>
<td></td>
<td>additive/100 l water for 10-20 min at 35-38°C 3-4 x weekly</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thymi aetheroleum and other active ingredients (e.g. Arnica tincture).</td>
<td>Traditional herbal medicinal product for the symptomatic relief of digestive disorders such as dyspepsia and flatulence.</td>
<td>100 g (= 100 ml) suspension contain 0.033 g of thyme oil Oral use Duration of use: 1 week Used in adults and adolescents. 3-5 x daily 20 ml</td>
<td>THMP since 2012, Austria.</td>
</tr>
</tbody>
</table>

2.1.2. Information on products on the market outside the EU/EEA

No information

2.2. Information on documented medicinal use and historical data from literature

Evidence of the period of traditional use:
The medicinal use of thyme oil is documented at least since 1589 (Dispensatorium Noricum, cited in Gildemeister et al. 1961). The essential oil of *Thymus vulgaris* L. is published in pharmacopoeias and standard textbooks of phototherapy since many decades (e.g. Tschirch 1917, Stahl 1962, Martindale 1972).

In Germany products containing thyme oil as the only active ingredient are on the market at least since 1976. Therefore, for thyme essential oil, a period of at least 30 years in medical use, as required by Directive 2004/24 EC for qualification as a traditional herbal medicinal product, is fulfilled.

The medicinal use of thyme oil in the specified indications is a European tradition.
Evidence regarding the indication in traditional use:

The overview of historical data of use of thyme oil is presented in table 2.

Table 2. Overview of historical data

<table>
<thead>
<tr>
<th>Herbal preparation</th>
<th>Documented Use / Traditional Use</th>
<th>Pharmaceutical form</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thyme oil</td>
<td>Oral use: Antihelmintic (use of thymol)</td>
<td>No posology available</td>
<td>Tschirch 1917, Stahl 1962, Madaus 1938</td>
</tr>
<tr>
<td>Thyme oil</td>
<td>Oromucosal use: Antiseptic</td>
<td>Mouthwash, tooth pastes</td>
<td>Gildemeister et al. 1961, Haffner et al. 1984</td>
</tr>
<tr>
<td>Thyme oil</td>
<td>Oral use: Catarrh of the upper respiratory tract, bronchial catarrh, symptoms of bronchitis, cough with spasms</td>
<td>Oral use: 4 - 5 drops (for example on a piece of sugar or mixed with honey) 3-5 x daily</td>
<td>Martindale 1972, Böhm et al. 2008, Blaschek et al. 2008: Hager CD-ROM</td>
</tr>
<tr>
<td>Thyme oil</td>
<td>Oral use: Acute bronchitis, whooping cough and laryngitis</td>
<td>Internally: 3 to 5 times a day 4 to 5 times on a piece of sugar cubes or mixed with honey</td>
<td>Leung AY (1980) cited in Blaschek et al. 2008: Hager CD-ROM</td>
</tr>
<tr>
<td>Thyme oil</td>
<td>Externally: in baths for the treatment of pruritus in dermatoses</td>
<td>Bath additive: with at least 0.004 g of thyme oil per liter of water</td>
<td>Pratzel and Schnizer, 1992. cited in German commission B, 1990</td>
</tr>
<tr>
<td>Thyme oil</td>
<td>Externally: Bruises, sprains</td>
<td>No posology available</td>
<td>Leung 1980</td>
</tr>
<tr>
<td>Thyme oil</td>
<td>Externally: in baths for the supportive treatment of acute and chronic diseases of the airways</td>
<td>Bath additive: with at least 0.004 g of thyme oil per liter of water</td>
<td>Pratzel and Schnizer, 1992. cited in German commission B, 1990</td>
</tr>
<tr>
<td>Thyme oil</td>
<td>Inhalation: (thyme oil as bath additive) Supportive treatment of acute and chronic diseases of the airways</td>
<td>For bath additives: full bath with at least 0.004 g of thyme oil per liter of water</td>
<td>German commission B, 1990</td>
</tr>
<tr>
<td>Thyme oil</td>
<td>Externally: Rubefacient, counter-irritation</td>
<td>No posology available</td>
<td>Martindale 1972, Stahl 1962</td>
</tr>
</tbody>
</table>
2.3. Overall conclusions on medicinal use

According to the data collected from traditional use of thyme oil, the evidence of use on period of medicinal use together with a posology and indication in traditional use is presented in table 3.

Table 3. Overview of evidence on period of medicinal use

<table>
<thead>
<tr>
<th>Pharmaceutical form</th>
<th>Indication</th>
<th>Strength</th>
<th>Period of medicinal use</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral use</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| Thyme oil | Oral use:
Catarrh of the upper respiratory tract, bronchial catarrh, symptoms of bronchitis, cough with spasms
Posology: Oral use: 4 - 5 drops (for example on a piece of sugar or mixed with honey) 3- 5 x daily | Martindale 1972
Böhme et al. 2008
Blaschek et al. 2008: Hager CD-ROM |
| **Cutaneous use** | | | |
| Thyme oil | Externally:
Pratzel and Schnizer, 1992. cited in German commission B, 1990 |
| **Bath additive** | | | |
| Thymi aetheroleum | Traditional herbal medical product for the relief of symptoms in coughs and colds with viscous mucus.
bath additive 8.44 g thyme oil in 100 ml (= 105.5 g) bath additive
children ≥ 2 years and adults: 20 ml bath additive/100 l water for 10-20 min at 35-38°C if necessary 1 x daily | At least since 1976, Germany, WEU |
| Thymi aetheroleum | Traditional herbal medical product for the relief of symptoms in coughs and colds.
bath additive 5.0 g thyme oil in 100 g bath additive
children ≥ 2 years and < 6 years: 5 ml bath additive/40–50 l water
children 6-12 years: 10 ml bath additive /50 – 60 l water
children ≥ 12 years and adults: 20 ml bath additive/100 l water for 10-20 min at 35-38°C 3–4 x weekly | At least since 1990, Germany, WEU |
| Thymi aetheroleum | Traditional herbal medical product for the relief of symptoms in coughs and colds with viscous mucus.
bath additive 6.0 g thyme oil in 100 g (= 95.2 ml) bath additive
children ≥ 2 years and adults: | At least since 1976, Germany, WEU |
<table>
<thead>
<tr>
<th>Pharmaceutical form Herbal preparation</th>
<th>Indication</th>
<th>Strength Posology</th>
<th>Period of medicinal use</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thymi aetheroleum</td>
<td>Traditional herbal medical product for the relief of symptoms in coughs and</td>
<td>bath additive 8.0 g thyme oil in 100 g (= 95 ml) bath additive</td>
<td>At least since 1976, Germany, WEU</td>
</tr>
<tr>
<td></td>
<td>colds with viscous mucus.</td>
<td>children ≥ 6 month and < 2 years: 2.5 ml bath additive/30 l water</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>children ≥ 2 years and < 6 years: 5 ml bath additive/40–50 l water</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>children 6-12 years: 10 ml bath additive/50–60 l water</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>children ≥ 12 years and adults: 20-30 ml bath additive/100 l water</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>for 10-20 min at 35-38°C</td>
<td></td>
</tr>
</tbody>
</table>

According to the market overview and literature thyme oil fulfils the criteria of medicinal use throughout a period of at least 30 years, including at least 15 years within the EU/EEA, i.e. traditional medicinal use according to Directive 2004/24/EC in the following indications and posologies:

Indication 1)

Traditional herbal medicinal product used as an expectorant in cough associated with cold.

Indication 2)

Traditional herbal medicinal product for the relief of symptoms in coughs and colds.

The product is a traditional herbal medicinal product for use in specified indications exclusively based upon long-standing use.

Posology

Indication 1)

Adults and elderly

Oral use: 0.2 to 0.25 ml, 3-5 times daily

If the symptoms persist longer than 1 week, a doctor or a qualified health care practitioner should be consulted.

Indication 2)

Adults and elderly

Cutaneous use: in liquid and semi-solid dosage forms in concentrations up to 10%; apply up to 3 times daily. Apply on the chest and the back.
If the symptoms persist longer than 1 week, a doctor or a qualified health care practitioner should be consulted.

Use as bath additive: 0.007 – 0.025 g per litre.

Adolescents

Use as bath additive: 0.007 – 0.025 g per litre.

Children 6-12 years

Use as bath additive: 0.0035 – 0.017 g per litre.

Children 3-6 years

Use as bath additive: 0.0017 – 0.0082 g per litre.

Duration of a bath: 10-20 minutes. One bath every day or every second day. Recommended temperature of bath: 35 – 38 °C.

3. Non-Clinical Data

3.1. Overview of available pharmacological data regarding the herbal substance(s), herbal preparation(s) and relevant constituents thereof

3.1.1. Primary pharmacodynamics

Secretomotoric activity
Only historic reports are available from experiments on the secretomotoric activity. Gordonoff (1931, 1932, and 1933) and Vollmer (1932) demonstrated secretomotoric and secretolytic properties of thymol and thyme preparations. A stimulation of the ciliary movement in the pharynx mucosa of frogs treated with diluted solutions of thyme oil, thymol or carvacrol has been reported by Freytag (1933, cited in Hager CD-ROM 2008).

Spasmolytic activity
Thyme oil shows a spasmolytic effect on the smooth muscle and a contracture involving a direct action on skeletal muscle by an unknown mechanism. The essential oils were diluted in methanol to give a final bath concentration of 5x10^-5 and 2x10^-4 g/ml for rat diaphragm in vitro with muscle stimulated directly or via phrenic nerve and 4x10^-6-8x10^-5 g/ml for field-stimulated guinea-pig ileum studies (Lis-Balchin et al. 1997).

Thymol has in vitro an agonistic effect on α1-, α2- and β-adrenoreceptors; the spasmolytic activity is detectable in concentrations > 10^-6 M. In a concentration of 10^-4 M, thymol suppresses the spontaneous contractile activity of the non-striated muscles of the stomach of the guinea pig. In higher concentrations thymol exhibits a spasmolytic activity in the ratio of 1:10 compared to papaverine (Beer et al. 2007).

Thyme oil inhibits the phasic contractions of the ileal myenteric plexus-longitudinal muscle preparation of the guinea pig. The ED50 was found for thyme oil at 6.9 mg/L compared to papaverine, which is 5 times more effective, and isoprenalin (ED50 0.0044). On the tracheal guinea-pig preparation papaverine was 700-times more effective than thyme oil (Brandt 1988, Reiter & Brandt 1985).
3.1.2. Secondary pharmacodynamics

Antibacterial activity

Oils with higher percentage of phenolic compounds show higher inhibitory activity (Penalver et al. 2005). Correlations between concentrations of thymol and MIC and minimal bactericidal concentration suggest that the formation of membrane perforations is the principal mode of action of thymol against oral bacteria (Shapiro et al. 1995).

Thyme essential oil had the lowest minimum inhibitory concentration (0.03% V/V) against *Escherichia coli* and *Candida* spp. among 20 essential oils tested (Hammer et al. 1999).

The antibacterial activity of 14 essential oils and their major components was evaluated by agar-plate dilution assay under sealed conditions, with agar used as a stabilizer for homogeneous dispersion by Inouye et al. (2001). Of the selected strains of four major bacteria causing respiratory tract infection, *Haemophilus influenzae* was most susceptible to the essential oils, followed by *Streptococcus pneumoniae* and *Streptococcus pyogenes*. *Staphylococcus aureus* was less susceptible. No cross-resistance was observed between penicillin-sensitive and penicillin-resistant *S. pneumoniae*. *Escherichia coli*, used as a control bacterium, showed the lowest susceptibility. Essential oils containing aldehyde or phenol as a major component showed the highest antibacterial activity, followed by the essential oils containing terpene alcohols.

Assessor’s comment:

Studies on the antibacterial activity of thyme oil, thymol or carvacrol published during the revision period (2011-2016) is presented in Table 4. However, there are a vast evidence of antimicrobial activity of thyme oil against foodborne microbes (*Clostridium perfringens*, *Listeria monocytogenes*, *Salmonella* spp.) (Radaelli et al. 2016; Reyes-Jurado et al. 2016; Miladi et al. 2016; Melo et al. 2015; Chaftar et al. 2015; Mancini et al. 2015), and against microbes which cause food-spoilage (Dunn et al. 2016).
Table 4. Overview of antibacterial activity of thyme essential oil during revision period (2011-2016)

<table>
<thead>
<tr>
<th>Substance</th>
<th>Microbial species tested</th>
<th>Source of microbial species</th>
<th>Outcome of antimicrobial testing</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thyme oil (GC-MS analysis: thymol 56.6%, p-cymene 12.3%, carvacrol 8.7%, ...)</td>
<td>Escherichia coli, Staphylococcus aureus, Enterococcus sp., Proteus mirabilis</td>
<td>ATCC collection, Clinical isolates</td>
<td>MIC 2.8-45.4 µL/mL (enterococci and Proteus sp. were resistant)</td>
<td>Bogavac et al. 2015.</td>
</tr>
<tr>
<td>Thyme oil (no data of composition)</td>
<td>S. aureus, Enterococcus faecalis, E. coli</td>
<td>Oral pathogens from ATCC cell culture collection</td>
<td>MIC 2-32 µL/mL</td>
<td>Thosar et al. 2013</td>
</tr>
<tr>
<td>Thyme oil (GC showed abundant content of thymol, p-cymene and linalool without percentage)</td>
<td>Acinetobacter baumannii, Klebsiella pneumoniae, Pseudomonas aeruginosa (multi-drug resistant isolates)</td>
<td>Clinical isolates</td>
<td>MIC 0.25-4 %v/v</td>
<td>Sakkas et al. 2016</td>
</tr>
<tr>
<td>Thyme oil (5 different collection areas; GC-MS analysis found abundant content of thymol up to 67.5% followed by carvacrol up to 7.3%)</td>
<td>E. coli, K. pneumoniae, P. vulgaris, P. aeruginosa</td>
<td>ATCC cell culture collection</td>
<td>MIC (depending on the thyme oil tested) from 6.25 to 100 µg/mg</td>
<td>Mancini et al. 2015</td>
</tr>
</tbody>
</table>

Abbreviation: MIC - minimal inhibitory concentration; MBC - minimal bactericidal concentration; ATCC - American Type Culture Collection, USA

Antifungal activity

The essential oil is highly antifungal, when tested on fungi and yeasts, e.g. *Candida albicans*. This activity is mainly attributed to phenol compounds thymol and carvacrol. Thymol interferes with the formation and viability of hyphae and induces morphological alterations in the envelope of *C. albicans* (Braga et al. 2007, 2007a). Thyme oil inhibits the mycelial growth of *Aspergillus flavus* and *A. niger* (Paster et al. 1990) and at concentrations of <= 500 ppm completely inhibits dose-dependently fungal growth and mycotoxin production of *A. flavus*, *A. parasiticus*, *A. ochraceus* and *Fusarium moniliforme* (Soliman & Badeaa 2002).

Assessor’s comment:

Studies on the antifungal activity of thyme oil, thymol and carvacrol published during the revision period (2011-2016) confirms earlier antifungal activity results of thyme oil or thymol and carvacrol in vitro. The thyme oil exhibited antifungal activity against moulds from environmental or human sources such as Fusarium spp. (Homa et al. 2015; Kumar et al.
Assessment report on Thymus vulgaris L., Thymus zygis L., aetheroleum EMA/HMPC/52980/2017

Page 14/29

2016), Aspergillus fumigatus, A. terreus, Fusarium solani, Lichtheimia corymbifera, Rhisopus microspores (Horváth et al. 2016). Aspergillus niger, A. fumigatus, A. flavus, A. ochraceus, Penicillium citrinum, P. chrysogenum (Sharifzadeh et al. 2016) and Candida spp. isolates from food (Rajkowska et al. 2017). The thyme oil showed also antifungal activity against clinical isolates and laboratory strains of yeasts (Candida spp., Cryptococcus spp.) with MIC ranged from 0.11 to >3200 µg/mL, depending on strain tested (Bogavac et al. 2015.; Soares et al. 2015; Chaftar et al. 2015; Horváth et al. 2016; Szweda et al. 2015). Furthermore, thymol and carvacrol showed potent antifungal activity against Candida spp. with MIC 0.10-0.31 mg/mL, and 0.17-0.62 mg/mL, respectively (Chaftar et al. 2015).

Anti-dermatophytal activity of thyme oil or/and thymol

The therapeutic efficacy of a 1% solution of thyme oil and thymol against Trichophyton mentagrophytes, T. rubrum and T. tonsurans was examined on 2-months old Wistar rats. During the 37-day observation period the oil - treated rats were cured (Sokovic et al. 2008). In dilution assays thyme oil showed much higher antifungal potency than the commercial fungicide bifonazole (Sokovic et al. 2009).

Thyme oil was antagonistic by vapour contact against an experimental tinea pedis in guinea pigs infected with Trichophyton mentagrophytes. Thyme oil killed the conidia, inhibited germination and hyphal elongation at concentrations of 1-4 µg/mL air (Inouye et al. 2001a).

Inouye et al. (2007) investigated in vitro the ability to treat tinea pedis with a combination of essential oils, heat and salt in a foot bath.

Agar blocks implanted with Trichophyton mentagrophytes were immersed in 0.1% aqueous agar containing two-fold dilutions of essential oils with or without sodium chloride at 27°C, 37°C and 42°C for 10 and 20 min. The fungicidal activity of essential oils was markedly enhanced by treating at 42°C for 20 min as compared with that at 27°C, showing 1/4 - 1/32-fold reduction of minimum fungicidal concentration (MFC to kill 99.99%). Thyme essential oil rich in thymol showed a conspicuous activity. MFCs were further reduced to 1/2 - 1/8 by the addition of 10% sodium chloride.

The in vitro activity of some essential oils (EO) (thyme red oil, fennel, clove, pine, sage, lemon balm and lavender) against clinical and environmental fungal strains was investigated. The minimal inhibitory concentrations were determined by a microdilution method in RPMI 1640 and by a vapour contact assay. The inhibiting effects of EO in vapour phase were generally higher than those in liquid state. According to both methods thyme red oil and clove were found to be the oils with the widest spectrum of activity against all fungi tested (Tullio et al. 2007).

Assessor’s comment:

The in vitro antifungal activity of thyme oil (composition of the oil according to GC-MS analysis: thymol 44.71%, γ-terpinene 26.01%, α-cymene 21.22%) was performed in vitro using measurement of mycelial biomass production and inhibition of mycelial radial growth of dermatophyte Trichophyton rubrum 10A9 and mould Aspergillus fumigatus MTCC 2550 and A. niger. Furthermore, thyme oil and thymol showed synergistic interaction with fluconazole against A. fumigatus and T. rubrum with FICI (Fractional Inhibitory Concentration obtained by chequerboard assay) values 0.187 and 0.156, respectively. Thymol also exhibited anti-elastase activity with reduction of 95.56% in comparison with untreated cells, while thyme oil also inhibited elastase activity with reduction of 90.75% in comparison
Assessment report on Thymus vulgaris L., Thymus zygis L., aetheroleum EMA/HMPC/52980/2017

Page 15/29

to control. However, the study also reports on the lower anti-keratinase activity of thymol (13.9%) and thyme oil (15.96%), respectively (Khan et al. 2014).

In a study of Chaftar et al. (2016) thyme oil thyme oil (GC-MS analysis: thymol 33.63%, p-cymene 33.14%, carvacrol 20.71%), MIC values of thyme oil using microdilution assay was in range 0.02 to 0.25 mg/mL, while thymol and carvacrol were inactive against two clinical isolates of dermatophyte species tested Trichophyton mentagrophytes and T. rubrum.

Overview of antibiofilm activity in vitro of thyme oil or thymol:

The linear correlation between percentage of inhibition of biofilm formation and thyme oil used in vitro was observed against Candida albicans (Bogavac et al. 2015). The study also demonstrates inhibition of germination of C. albicans blastopores, as one of the most important virulence factors in concentration of thyme oil at 0.25 %v/v (Bogavac et al. 2015).

Thyme oil (GC-MS analysis revealed the main compounds thymol 41.33%, p-cymene 18.08%, γ-terpinene 13.12%, p-cymene-3-ol 5.24% etc.) was assessed in vitro for antibiofilm activity using Salmonella typhimurium ATCC 1408 and foodborne isolates (N=11). The thyme oil possessed antibiofilm activity determined by XTT/formazan-reduction assay in concentration range from 0.106 to 0.725 mg/mL with inhibition of 50% of biofilm formation. Biofilm inhibition concentration of 90% was found to be between 3.12 and 7.25 mg/mL. From the other side, thyme oil also inhibited biofilm formation on microscopic slide covers at concentrations of a half of MIC values (0.78 to 1.56 mg/mL) (Miladi et al. 2016).

In their study Vázquez-Sánchez et al. (2015) thyme oil showed the most potent anti-biofilm activity amongst essential oils against Staphylococcus aureus St1.01. strain using stainless steel coupons model for in vitro bacterial biofilm production. The effectiveness of thyme oil against planktonic cells was strongest among tested oils with MIC vale 0.04%. Using the model of 48-h-old biofilms of S. aureus St1.01. thyme oil showed strongest antimicrobial efficacy against biofilm formed with logarithmic reduction of 4.3 log CFU/cm². After exposing the thyme oil to S. aureus St1.01 in different concentrations ranged from 0.02% to 0.04%, thus in sub-lethal doses for S. aureus cells, in the long-term exposure to the thyme oil the S. aureus cells showed adaptation. The study showed anti-biofilm formation of thyme oil of biofilm formed onto stainless steel with S. aureus cells but with not completely eradication of biofilm (Vázquez-Sánchez et al. 2015).

Thyme oil (GC-MS analysis showed dominated compounds in oi: 1.8-cineole 53.46%, camphor 7.15%, terpinen-4-ol 5.46%) also reduces and eliminate biofilm formation of Aeromonas hydrophila on stainless steel surfaces by 3.84 log CFU/cm² at 25°C (Millezi et al. 2013).

In study of Kavanaugh and Ribbeck (2012), thyme oil showed more potent anti-biofilm formation in vitro that antibacterial activity on planktonic cells of Pseudomonas aeruginosa PA01 and Pseudomonas putida KT2440.

Antioxidant activity

Antioxidative effects of thyme oil have been determined in various test systems in vitro (e.g., Youdim et al. 1999a, Dorman et al. 2000, Kulic et al. 2007). Essential oils with high proportions of the phenolic components thymol and/or carvacrol showed the highest antioxidant activities (Jukic et al. 2005, Chizzola et al. 2008). The antioxidant activity of p-cymene-2.3-diol, a minor component of the essential oil, is considered as more potent than thymol or carvacrol, which could be due to its dihydroxy structure (Schwarz et al. 1996).
Thyme essential oil exhibited a dose-dependent protective effect on the copper-induced LDL oxidation. The protective effect of essential oils is assigned to the presence of phenolic monoterpenes, thymol and carvacrol, which are identified as the dominant compounds (Kulisic et al. 2007).

Youdim et al. (1999, 1999a, 2000, 2002) investigated the influence of thyme oil and of thymol on the phospholipid polyunsaturated fatty acid composition, antioxidant enzyme activity and the phospholipid fatty acid composition in several rat tissues. The rats were fed with a diet containing thyme oil or thymol in an amount of 42.5 mg/kg BW/day. Beneficial effects could be found in different experimental settings. Thymol alone was not more effective compared to the entire essential oil.

Pérez-Rosés et al. (2016) showed that thyme oil possess inhibitory activity in non-biological test using DPPH scavenging activity and in biological test on MPO and ROS production in PMA stimulated leukocytes, however with weak inhibitory activity on ROS production using leukocytes which were stimulated by H₂O₂.

The low free radical scavenging activity of thyme oil using assay with DPPH was confirmed in comparison with ascorbic acid and after determination of IC₅₀ after 60 minutes (Mancini et al. 2015). The thyme oil in study of Mancini et al. 2015 was rich in thymol (up to 67.5%).

Anti-inflammatory activity

Thyme oil inhibits prostaglandin biosynthesis, thymol was less active in the COX-inhibition test (Wagner et al. 1986).

Thymol was shown to inhibit dose-dependently the experimentally induced release of neutrophil elastase. The authors concluded that thymol may have a helpful effect in the control of inflammatory processes present in many infections (Braga et al. 2006).

Thyme oil (composition of most abundant compounds: carvacrol 45.5%, α-terpineol 22.9%, endoborneol 14.3 determined by GC-MS) and its constituents thymol and carvacrol were studied in vitro for modulation of inflammatory response (Fachini-Queiroz et al. 2012). The study showed that thymol inhibited inflammatory oedema and thymol is an effective chemoattractant, but it did not reduce the oedema formation. From the other side, carvacrol reduced oedema formation, exerting possible topical anti-inflammatory effects (Fachini-Queiroz et al. 2012).

Carvacrol showed reduction of IL-1β and TNF-α at the protein and mRNA levels. Thymol also modulates inflammatory response of stimulated mouse macrophages with reduction of IL-1β expression (Gholijani et al. 2015).

Further activities

Effects on the alimentary canal

In the stomach thymol (<0.5 mM) suppressed the generation of action potential and slow potential changes without any marked change in membrane potential and membrane resistance. Increased concentrations of thymol (>0.5 mM) reduced the membrane potential and membrane resistance. In the ileum and rectum, thymol suppressed spike activity without any marked change in the membrane potential. Although the membrane was completely depolarized, thymol (>1 mM) suppressed the generation of phasic and tonic responses of the K-induced contracture evoked in the various regions of the alimentary canal. Thymol (0.5 mM) suppressed spontaneous mechanical responses in the various regions of the alimentary canal (Ito et al. 1974).

ACE-inhibition

Jukic et al. (2007) examined in vitro the inhibitory activity exerted by the main constituents of essential oil obtained from *Thymus vulgaris* L. on acetylcholinesterase (AChE). The total essential oil
and selected compounds, specifically linalool and thymol, carvacrol and their derivatives thymoquinone and thymohydroquinone, were tested for AChE inhibition. Thymohydroquinone exhibited the strongest AChE inhibitory effect over the range of concentrations. The AChE inhibitory potential decreased in the following order: thymohydroquinone > carvacrol > thymoquinone > essential oil > thymol > linalool.

Wound healing

After topical treatment of burned rats with thyme oil (1:1 diluted with olive oil) an increase in the formation of new tissue could be observed (Dursun et al. 2003).

Bone Metabolism

Thyme oil and thymol have been demonstrated to be efficient inhibitors of bone absorption in rats. Thymol is a direct inhibitor in the osteoclast absorption pit assay (Mühlbauer et al. 2003).

Cardiovascular system

Thymol in concentrations of 1-10 mg/kg BW inhibited calcium channels in rats and lowered blood pressure (Aftab et al. 1995).

Magyar et al. (2002) achieved a similar inhibition of calcium and potassium channels in canine and human ventricular cardiomyocytes.

Szentandrassy et al. (2004) concluded from experiments on the Langendorff-perfused guinea pig heart that the negative inotropic action of thymol can be explained by reduction in calcium content of the sarcoplasmic reticulum due to the combination of the thymol-induced calcium release and inhibition of the calcium pump. The calcium-sensitizer effect, observed at lower thymol concentrations, indicates that thymol is likely to interact with the contractile machinery also.

Skeletal muscles

Thymol suppresses both Ca²⁺ and K⁺ currents in enzymatically isolated rat skeletal muscle fibers in a concentration-dependent manner (Szentandrassy et al. 2003).

Thymol and carvacrol were able to evoke Ca²⁺ release with EC₅₀ values of 158 +/- 16 and 211 +/- 55 µM respectively in heavy sarcoplasmatic reticulum vesicles isolated from skeletal muscle and actively loaded with calcium (Sarkozi et al. 2007).

Effects on the CNS

Lim et al. (2005) investigated the stimulating or sedative effects of inhaling thyme essential oil by using the forced swimming test (FST) with mice. The inhalation of thyme oil (p<0.05) resulted in 22.87% reduction of immobility. The same results were achieved when over-agitation was artificially induced in the mice by an intraperitoneal injection of caffeine.

Mohammadi et al. (2001) investigated several phenol derivatives with regard to their ability to activate directly the gamma-aminobutyric acid (GABA(A)) receptors in the absence of the natural agonist. This mechanism is supposed to contribute to its sedative-hypnotic actions. Only compounds with the phenolic hydroxyl attached directly to the benzene ring and with aliphatic substituents in ortho position to the phenolic hydroxyl activated chloride currents in the absence of GABA. The concentrations required for half-maximum effect were 200 µM for thymol, and 23 µM for the positive control propofol.

Insecticidal actions

Thyme oil is lethal against adult Oryzaephilus surinamensis, Rhyzopertha dominica and Sitophilus oryzae (Shaaya et al. 1991).
Good insecticidal activity (>90%) against larvae of *Lycoriella ingenua* was achieved with thyme oil at 30 x 10^-3 mg/1 air. Carvacrol and thymol were effective at 10 x 10^-3 mg/l (Park et al. 2008). The LD50 against *Tyrophagus putrescentiae*, a stored food mite, is 10.2 µg/cm² in an impregnated fabric disk assay (Jeong et al. 2008).

Mosquito control

Thymol and carvacrol are potent repellents in concentrations of about 0.05% in topical treatment (Choi et al. 2002, Park et al. 2005).

Antihelmintic actions

Antiparasitic

Thyme oil is effective against *Trypanosoma cruzi*. Thymol may be the main component responsible for the trypanocidal activity (Santoro et al. 2007).

In an in vitro growth inhibition assay with bloodstream forms of *Trypanosoma brucei* the ED50 of thyme essential oil was found to be 0.4 µg/ml (Mikus et al. 2000).

Assessor's comment:

Thyme oil was active against Anisakis larvae, a parasite which can cause human disease after consumption of raw or almost raw seafood products. Larvicidal effects of thyme oil (5% and 10% in sunflower oil, respectively) were determined after 7 and 14h after treatment, respectively. The results suggested the use of thyme oil for prevention and treatment of anisakiasis (Giararatana et al. 2014). The composition of thyme oil used in study of Giararatana et al. (2014) was: thymol (50 %), linalool (7%), carvacrol (3%), alpha- and beta-pinene (6%).

The thyme essential oil was active (toxic) against human head louse, *Pediculus humanus capitis*, an obligatory ectoparasite using in vitro fumigation toxicity assay against adult form of louse. The thyme oil was found to be ovicidal and possess direct pediculocidal activity against adult lice (Gutiérrez et al. 2016). Thyme oil used in study of Gutiérrez et al. 2016 was thymol type (content of thymol 47.19 per cent) and p-cymene 28.37 per cent determined by GC-MS.

In study of Yones et al. (2016) thyme oil (GC-MS analysis showed the most abundant compounds were: thymol 33.8%, o-cymene 14.8%, γ-terpinene 11.8%, thymol methyl ether 6.4% and caryophyllene 5.15%) showed insecticidal activity in vitro against female *P. humanus capitis* using the filter paper contact during 3h at dosed 0.25 and 0.5 mg/cm², respectively. However, the insecticidal activity (pediculocidal activity) was not comparable to the malathion (at dose 0.5 mg/cm² using knockdown 50% time (KT50 min). Mean death time and the percentage of morbidity of thyme oil was 49±2.12 min for concentration tested at 0.25 mg/cm², and 38±2.17 min which was significantly different in comparison to control with 95% of morbidity (p<0.05), however with lower pediculicidal activity in comparison with malathion (mean death time 15±0.22 min with 100% of morbidity). Study of Yones et al. (2016) showed that thyme oil was effective adulticide against *P. humanus capitis* and effective inhibitor of hatching of *P. humanus capitis* eggs at dose 0.25 and 0.5 mg/cm², comparable to insecticide malathion.

Antiviral actions
The IC$_{50}$ for thyme oil against herpes simplex virus type 2 was determined at 0.007% when the essential oil was added at different stages during the viral infection cycle (Koch et al. 2008).

3.1.3. Safety pharmacology

No data.

3.1.4. Pharmacodynamic interactions

No data.

3.1.5. Conclusions

Numerous pharmacological activities are reported for thyme oil or for the isolated compound thymol and/or carvacrol. Most experiments refer to the \textit{in vitro} antimicrobial activity of essential oil chemotypes where thymol was dominant compound. This effect is primarily used in food industry, where thyme oil is an effective agent against spoiling. The spasmolytic activity and the few data on the secretomotoric activity make the use as expectorant in cough associated with cold plausible.

3.2. Overview of available pharmacokinetic data regarding the herbal substance(s), herbal preparation(s) and relevant constituents thereof

No non-clinical data on pharmacokinetics are available.

3.3. Overview of available toxicological data regarding the herbal substance(s)/herbal preparation(s) and constituents thereof

3.3.1. Single dose toxicity

Acute toxicity

The LD$_{50}$ of the essential oil p.o. in rats was 2.84 g/kg body weight (Von Skramlik 1959). The intraperitoneal LD$_{50}$ of \textit{Thymus zygis} oil in mice was 600 mg/kg body weight (Jimenez et al. 1993). During antimicrobial activity assessment of high doses of thyme oil (0.05% compared to 0.01% and 0.06 mM diluted in ethanol) and thymol (24% content in thyme oil) simultaneously strong cytotoxic effect on Caco-2 cells was stated (Fabian et al. 2006). The extent of damage in the cell population caused by enteroinvasive \textit{E. coli} was also widened. In accordance with this, the presence of the evaluated substances at high concentrations in the digestive system could cause injury to intestinal cells.

Subchronic toxicity:

In commonly used doses (up to 20 drops per day; as culinary herb) no acute or chronic toxicity is reported for thyme oil (Mills & Bone 2000).

3.3.2. Repeat dose toxicity

Chronic toxicity
No toxic effects were observed in rats after the addition of 1.0% of thymol to their diet for 19 weeks (Hagan et al. 1967).

3.3.3. Genotoxicity

Mutagenicity and genotoxicity

Essential oil:
Thyme essential oil had no mutagenic or DNA-damaging activity in either the Ames test (strains TA1535, TA1537, TA98, TA100, with and without metabolic activation) and *Bacillus subtilis* rec-Assay (Zani et al. 1991).

Thymol and other constituents:
Thymol did not show mutagenicity in *Salmonella typhimurium* strains TA97, TA98 and TA100, with and without S9 metabolic activation and 20 minutes standard preincubation time (Azizan et al. 1995).

Stammati et al. (1999) determined relative cytotoxicity of thymol and carvacrol and assessed their potential genotoxicity in short-term assays. Both substances inhibited the colony-forming ability of Hep-2 cells in dose-dependent manner. The results of an AMES-test in strains TA100 and TA98 were ambiguous. Both substances were marginally more toxic to repair-deficient strain than to its repair-proficient counterpart. The substances produced elevated revertant numbers in the strain TA100, but not to a level generally considered significant. Effects in the SOS chromotest are interpreted as signs of toxicity rather than real SOS induction. The authors conclude that the genotoxic potential of thymol and carvacrol is very weak.

Concentrations of thymol and γ-terpinene above 0.1 mM significantly induced DNA damage in human lymphocytes, however, below this concentration thymol and carvacrol significantly reduced the oxidative DNA damage induced by H₂O₂ (Aydin et al. 2005a) or imidazolquinoline and mitomycin C (Aydin et al. 2005b).

Thymol and carvacrol reduced the level of DNA-lesions caused by H₂O₂ in HepG2 and colonic Caco-2 cells (Horvathova et al. 2006).

Thymol in concentrations up to 520 μM did not increase the frequencies of chromosome aberrations in Syrian hamster embryo cells compared to the control cells (Hikiba et al. 2005).

Azirak & Rencuzogullari (2008) investigated the in vivo genotoxic effects of carvacrol and thymol in bone marrow cells of rats. Both carvacrol (10, 30, 50, and 70 mg/kg b.w. intraperitoneally) and thymol (40, 60, 80, and 100 mg/kg b.w. intraperitoneally) significantly induced the structural and total chromosome abnormalities (CA) in bone marrow cells for all treatment periods (6, 12, and 24 h) when compared with control. Both carvacrol and thymol showed similar effects with the positive control urethane on induction of the percentage of structural and total CA at the highest concentrations except the effects of carvacrol for 6 h treatment (70 mg/kg b.w. and 100 mg/kg b.w., respectively). In addition, carvacrol induced the numerical CA at all concentrations when compared to control and at two highest concentrations (50 and 70 mg/kg b.w.) when compared to solvent control. Thymol also induced the numerical CA especially at the highest concentration (100 mg/kg b.w.) for all treatment periods.

Undeger et al. (2009) examined the genotoxicity of thymol and carvacrol using comet assay. V79 Chinese hamster lung fibroblast cells were treated with 1, 5, and 25 μM thymol and carvacrol. The results of this study indicate a lack of clastogenic activity for thymol and carvacrol at biologically relevant concentrations, and a moderate antioxidant activity in vitro.
Assessor’s comment:

Several articles were published during revision period (2011-2016) dealing with mutagenicity and/or genotoxicity of thyme oil or its constituents (thymol and carvacrol) in which different toxicological approaches were noted. The overview of existing data concerning genotoxicity or mutagenicity of thyme oil, thymol and/or carvacrol in vitro is presented in Table 5.

<table>
<thead>
<tr>
<th>Toxicological approach in vitro</th>
<th>Method used</th>
<th>Outcome of an assay</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mutagenicity testing of thyme oil (GC-MS analysis showed highest content of o-cymene 56.2%, carvacrol 24.44% and thymol 8.75%)</td>
<td>Ames test using Salmonella typhimurium TA98 and TA100 with and without rat liver S9 fraction</td>
<td>No increase of revertant was noticed with and without metabolic activation in concentration of thyme oil up to 463 µg/plate</td>
<td>De Martino et al. 2009.</td>
</tr>
<tr>
<td>Mutagenicity testing of thyme oil (GC-MS analysis showed high content of p-cymene, thymol and carvacrol)</td>
<td>Ames test using Salmonella typhimurium TA100 with and without rat liver S9 fraction</td>
<td>No increase of revertant was noticed with and without metabolic activation in concentration of thyme up to 500 µg/mL</td>
<td>Shoeibi et al. 2009.</td>
</tr>
<tr>
<td>Mutagenicity testing of thymol and carvacrol</td>
<td>Ames test using Salmonella typhimurium TA97A, TA98, TA100, TA102, TA104 according to the OECD guideline 471 (2002) with and without metabolic activation system with S9 fraction</td>
<td>No indication of mutagenic activity of thymol (up to 205 µM) with/without metabolic activity. Carvacrol did not show mutagenic activity on TA100, TA102, TA104 (conc. up to 460 µM), however mutagenic activity was noticed on TA97A in the absence of S9 (conc. 29 and 115 and µM) and on TA98 strain both in the presence (conc. 29-460 µM) and without S9 (conc. 115-230 µM).</td>
<td>Llana-Ruiz-Cabello et al. 2014.</td>
</tr>
<tr>
<td>Genotoxicity testing of thymol and carvacrol</td>
<td>Comet assay on Caco-2 cells without and with post-treatment with Endo III and FGA proteins</td>
<td>Carvacrol (up to 460 µM) and thymol (up to 250 µM) did not induce DNA strand-breaks after 24h and 48h of exposure. Carvacrol induces DNA breaks after 48h of FGA post-exposure in highest conc. of 460 µM (greater than after 24h exposure) which indicate formation of 8-oxoGua, ring opened purines.</td>
<td>Llana-Ruiz-Cabello et al. 2014.</td>
</tr>
<tr>
<td>Genotoxicity testing of thymol and carvacrol</td>
<td>Micronucleus assay (MA) on mouse lymphoma L5178Y/Tk<sup>+</sup> cells</td>
<td>Thymol did not increase of frequency of binucleated cells presenting at least one micronucleus at concentrations up to 250 µM with or without S9</td>
<td>Maisanaba et al. 2015.</td>
</tr>
</tbody>
</table>
Thyme essential oil as a herbal preparation had no mutagenic or DNA-damaging activity in either the Ames test (strains TA1535, TA1537, TA98, TA100, with and without metabolic activation) and *Bacillus subtilis* rec-Assay (Zani et al. 1991). These was confirmed using TA98 and TA100 strains with and without rat liver S9 fraction during revision period (De Martino et al. 2009) and on TA100 strain with and without rat liver S9 fraction (Shoeibi et al. 2009.). However, results of Ames tests were not performed using thyme oil with composition in compliance with European pharmacopoeia Monograph for thymol-chemotype.

During revision period several articles were published regarding mutagenicity of thymol as most abundant compound of thymol-chemotype of thyme oil. Thymol (up to 250 µM) did not induce DNA strand-breaks (Llana-Ruiz-Cabello et al. 2014.), and did not increase of frequency of binucleated cells presenting at least one micronucleus at concentrations up to 250 µM with or without S9 fraction which indicate that thymol is not genotoxic in mammalian cell using micronucleus assay (Maisanaba et al. 2015.). Genotoxicity testing in *vitro* showed that thymol increased sister chromatid exchange, induce structural chromosome aberration without dose-depended manner (from 25-100 µg/mL).

Genotoxicity testing of thymol and carvacrol	Mouse lymphoma thymidine-kinase assay (MLA) on mouse lymphoma L5178Y/TK- cells	Thymol was not mutagenic after 4h exposure of conc. up to 250 µM. Exposure of cells to carvacrol at conc. higher than 500 µM decrease its relative total growth, but no mutagenic effects were noted even after exposure cell to carvacrol to 24h indicating no mutagenic activity of carvacrol in MLA assay at conc. tested	Maisanaba et al. 2015.
Genotoxicity testing of carvacrol	Comet assay on rat neurons and cultured N2a rat neuroblastoma cells	Carvacrol was not genotoxic in conc. up to 400 mg/L in *vitro* in cultures of rat neurons and N2a rat neuroblastoma cells	Aydin et al. 2014.
Genotoxicity testing of thymol	Sister chromatid exchange (SCE), chromosome aberration (CA), micronucleus tests (MN), rate index (RI), mitogenic index (MI), nuclear division index (NDI) on human peripheral lymphocytes (HPL) *ex situ*	Thymol increased SCE induce structural CA and MN without dose-depended manner (from 25-100 µg/mL). Thymol did not induce chromosome abnormalities (aneuploidity and euploidy). Cytotoxic effect of thymol was shown by decreasing RI, MI and NDI at higher concentrations	Buyukleyla and Rencuzogullari, 2009.
Thymol did not induce chromosome abnormalities (aneuploidy and euploidy) (Buyukleyla and Rencuzogullari, 2009.)

3.3.4. Carcinogenicity

No data.

3.3.5. Reproductive and developmental toxicity

Thyme essential oil consisting of 48% p-cymene and 24% thymol (0.25% essential oil in the feed over 2 weeks and during 4 days of pregnancy, n=15, number of embryos: 126) showed no influence on the growth and development of mouse embryos in vivo (Domaracky et al. 2006).

3.3.6. Local tolerance

The in vivo acute dermal irritation/corrosion (burnst)

Thyme oil (0.5 mL undiluted oil on 6 cm² gauze) was evaluated on young albino rabbit shaved skin for possible irritation and/or corrosion with exposure time between 3 minutes, 1h and 4h of application and no adverse effects were noticed using scoring system according to OECD Guideline No. 404 (OECD, 2002). Animals were observed also 14 days after exposure to thyme oil for possible late appearance of irritable and burnst effects and no adverse effects were noticed (Gutiérrez et al. 2016). Thyme oil used in study of Gutiérrez et al. 2016 was thymol type (content of thymol 47.19 per cent) and p-cymene 28.37 per cent determined by GC-MS.

3.3.7. Other special studies

No data.

3.3.8. Conclusions

Thyme oil had no mutagenic activity in the Ames test (strains TA1535, TA1537, TA98, TA100) with and without metabolic activation and in Bacillus subtilis rec-assay (Zani et al. 1991). Although the Ames test on thyme oil by Zani et al. (1991), lacked one of the currently used strains the negative result could be regarded reliable, because the paper contains adequate description of findings and because the Ames test is supplemented by the rec-assay.

Mutagenicity and genotoxicity of the main components of thyme oil, thymol and carvacrol, have been assessed in a number of studies on both prokaryotic and eukaryotic in vitro and in vivo experimental systems. The studies have many weaknesses, findings are often contradictory, and reporting does not always contain sufficient details, which make interpretation difficult and conclusion equivocal. Thymol is also an antioxidant and prevents DNA damage in certain experimental conditions. It seems that in some studies thyme oil and its main components give weak indications towards genotoxicity, but at the best these indications are weak and debatable. Adequately performed mammalian cell studies are needed for the assessment of genotoxicity for the oral use of thyme oil.

However, from a non-clinical point of view, the use of thyme oil for cutaneous use and as a bath additive can be regarded as safe when administered in the recommended posology and duration of use.
3.4. **Overall conclusions on non-clinical data**

Numerous pharmacological activities are reported for thyme oil or for the isolated compound thymol and/or carvacrol. Most experiments refer to the in vitro antimicrobial activity of essential oil chemotypes where thymol was dominant compound. This effect is primarily used in food industry, where thyme oil is an effective agent against spoiling.

The spasmolytic activity and the few data on the secretomotoric activity make the use as expectorant in cough associated with cold plausible.

Adequate tests on reproductive and developmental toxicity have not been performed. The use during pregnancy and lactation cannot be recommended. No fertility data is available.

Mutagenicity and genotoxicity of thyme essential oil and its main components, thymol and carvacrol, have been assessed in a number of studies on both prokaryotic and eukaryotic *in vitro* and *in vivo* experimental systems. The studies have many weaknesses, findings are often contradictory, and reporting does not always contain sufficient details, which make interpretation difficult and conclusion equivocal. Thymol is also an antioxidant and prevents DNA damage in certain experimental conditions. It seems that in some studies thyme oil and its main components give weak indications towards genotoxicity, but at the best these indications are weak and debatable. Adequately performed mammalian cell studies are needed for the assessment of the genotoxicity for the oral use of thyme oil. It is important to consider that tests of genotoxicity and mutagenicity *in vitro* were not performed in most cases with herbal substance (thyme oil) which composition is in compliance with recent European pharmacopoeia Monograph limits of thymol-chemotype thyme oil.

Tests on carcinogenicity have not been performed.

According to the data during traditional period of use, the use of thyme oil for topical use and as a bath additive can be regarded as safe when administered in the recommended posology and duration of use.

4. **Clinical Data**

4.1. **Clinical pharmacology**

4.1.1. **Overview of pharmacodynamic data regarding the herbal substance(s)/preparation(s) including data on relevant constituents**

No data.

4.1.2. **Overview of pharmacokinetic data regarding the herbal substance(s)/preparation(s) including data on relevant constituents**

Thymol: After application of a single dose of thyme dry extract (corresponding to 1.08 mg thymol) only the sulphate-conjugate could be detected in the human plasma, but not the free thymol nor the glucuronide. The sulphate could be detected 20 minutes after application; maximum plasma levels were reached after about 2 hours. Thymol can be detected in the plasma up to 38 hours; renal
elimination was completed within 24 hours. Elimination half-life was determined as 10.2 hours (Kohlert et al. 2002).

4.2. **Clinical efficacy**

No data.

4.2.1. Dose response studies

No data.

4.2.2. Clinical studies (case studies and clinical trials)

Indication: Cough associated with cold:
No data available from studies using thyme oil as the only active substance. Studies including combinations with synthetic drugs are considered as not relevant for the monograph on thyme oil.

Stomatitis:
A comparison of different mouthrinses (containing thymol, chlorhexidine, povidone + H₂O₂) showed no differences in the papillary bleeding score and in plaque index between the treatment with thymol and water (Maruniak et al. 1992).

The application of a combination of thymol, menthol, methyl salicylate and 1.8-cineol over 6 months did not show statistically significant differences between the vehicle and the essential oil group. Neither development of bacterial resistance nor emergence of opportunistic pathogens could be observed (Charles et al. 2000).

Many clinical trials are published which investigate the efficacy of combinations of chlorhexidine and thymol (e.g., Twetman et al. 1999). The contribution of thymol to the overall efficacy cannot be estimated.

Thyme oil (from *Thymus zygis* L.) in the combination with oils of *Cymbopogon flexuosus* (Nees ex Steud.) W. Watson and *Rosmarinus officinalis* L.) showed positive effect on reduction of subgingival microbial biofilm formation in a randomized clinical trial (N=46, patients with moderate chronic periodontitis) and measuring the probing depth, attachments level, bleeding and probing and modified sulcus bleeding index after 3 and 6 months (Azad et al. 2016).

4.3. **Clinical studies in special populations (e.g. elderly and children)**

No data.

4.4. **Overall conclusions on clinical pharmacology and efficacy**

There are no data available for thyme oil to support a well-established use indication.
5. Clinical Safety/Pharmacovigilance

5.1. Overview of toxicological/safety data from clinical trials in humans

No data.

5.2. Patient exposure

Aside from market presence and data from studies, there are no concrete data concerning patient exposure.

5.3. Adverse events, serious adverse events and deaths

Adverse events related to the essential oil:

No irritation of the skin of 25 volunteers was noted in concentrations of 8% thyme oil in petrolatum after 48 hours of closed-patch test. No sensitization reactions were noted using maximization test at a concentration of 8% of thyme oil on petrolatum (Opdyke 1974. cited in Hager CD-ROM 2008; Kligman 1966 cited in Opdyke 1979; Opdyke 1974 cited in Plants in cosmetics – Potentially harmful components, 2006). The daily application in gargles, mouthwashes and toothpastes over a longer period (no exact data available) may cause allergic reactions (Hager CD-ROM 2008).

There were no phototoxic effects recorded for thyme oil (Urbach and Forbes 1973 cited in Opdyke 1979).

There are 73 recorded exposures with *Thymus vulgaris* as key word on VigiBase databases till November 2016. The use of *Thymus vulgaris* L. as s single medicine was confirmed in 35 cases and other recorded exposures were in combination of *Thymus vulgaris* L. with synthetic medicinal products and/or with a herbal medicinal products.

From the EudraVigilance database data, there are 47 newly reported side-effects and adverse reactions during revision period using thyme oil as mono-component medicinal products and as in combination with other medicinal products (synthetic or in combination with other essential oils) till November 2016.

Adverse events related to thymol:

In very rare cases allergic reactions may occur due to the content of thymol (Hänsel 1994).

Assessor’s comment:

There are no new safety concerns identified from case-reports in the VigiBase and EudraVigilance databases up to November 2016.

In the literature, there is information on cases of skin irritation and allergic reactions, also during the revision period. However, in older literature data no skin irritations and sensitizations of thyme oil up to 8% in petrolatum were observed in volunteers. Because the recorded skin irritations and allergic reactions was recorded before and during revision period, the following information has to be kept in the monograph section 4.8:

Oral use: Hypersensitivity reactions have been observed. The frequency is not known.

Cutaneous use: Hypersensitivity reactions and skin irritation have been observed. The frequency is not known.
5.4. **Laboratory findings**

No data.

5.5. **Safety in special populations and situations**

No data.

5.5.1. **Use in children and adolescents**

Use as bath additive: The use in children under 3 years of age is not recommended because medical advice should be sought and due to lack of adequate data.

Cutaneous use and oral use: The use in children and adolescents under 18 years of age is not recommended due to lack of adequate data.

5.5.2. **Contraindications**

Hypersensitivity to the active substance.

Use as bath additive: Full baths are contraindicated in cases of open wounds, large skin injuries, acute skin diseases, high fever, severe infections, severe circulatory disturbances and cardiac insufficiency.

5.5.3. **Special Warnings and precautions for use**

Use as bath additive:

When dyspnoea, fever or purulent sputum occurs, a doctor or a qualified health care practitioner should be consulted. The use in children under 3 years of age is not recommended because medical advice should be sought and due to lack of adequate data.

In cases of hypertension, a full bath should be used with caution.

Cutaneous use:

Thyme oil should not be applied to the face particularly in the nasal area of babies and infants under the age of two years because of the risk of a laryngospasm.

Cutaneous use and oral use:

When dyspnoea, fever or purulent sputum occurs, a doctor or a qualified health care practitioner should be consulted.

5.5.4. **Drug interactions and other forms of interaction**

No data.

5.5.5. **Fertility, pregnancy and lactation**

Safety during pregnancy and lactation has not been established; in the absence of sufficient data, the use during pregnancy and lactation is not recommended. No fertility data available.

5.5.6. **Overdose**

Single reports of hyperthyroidism are mentioned after long term use of overdoses of thymol. No cases are reported for thyme oil.
5.5.7. **Effects on ability to drive or operate machinery or impairment of mental ability**

No studies on the effect on the ability to drive and use machines have been performed.

5.5.8. **Safety in other special situations**

No data.

5.6. **Overall conclusions on clinical safety**

Safety during pregnancy and lactation has not been established for thyme oil. In the absence of sufficient data, the use during pregnancy and lactation is not recommended.

Oral use: Thyme oil used as an expectorant in cough associated with cold has a long standing medicinal use in the EU. From a clinical safety point of view, there are no safety concerns for adults and elderly when administrated in accordance with the monograph. The oral use in children and adolescents under 18 years of age is not recommended due to lack of adequate data.

Cutaneous use: Thyme oil for the relief of symptoms in coughs and colds has a long standing medicinal use in the EU. From a clinical safety point of view, there are no safety concerns for adults and elderly when administrated in accordance with the monograph. The cutaneous use in children and adolescents under 18 years of age is not recommended due to lack of adequate data.

The use as a bath additive: Thyme oil for the relief of symptoms in coughs and colds has a long standing medicinal use in the EU. From a clinical safety point of view, there are no safety concerns for adults, elderly, adolescents and children from 3 years of age, when administrated in accordance with the monograph. The use as a bath additive in children under 3 years of age is not recommended because medical advice should be sought and due to lack of adequate data. In cases of hypertension, a full bath should be used with caution.

6. **Overall conclusions (benefit-risk assessment)**

There are no clinical studies available for thyme oil to support a well-established use indication in accordance with Article 10a of Directive 2001/83/EC.

According to the market overview and literature, thyme oil for oral use, cutaneous use and as a bath additive, fulfils the criteria of medicinal use throughout a period of at least 30 years, including at least 15 years within the EU/EEA, i.e. traditional medicinal use according to Directive 2004/24/EC for the following indications:

Oral use:

Traditional herbal medicinal product used as an expectorant in cough associated with cold.

The product is a traditional herbal medicinal product for use in specified indications exclusively based upon long-standing use.

Cutaneous use, use as bath additive:

Traditional herbal medicinal product for the relief of symptoms in coughs and colds.

The product is a traditional herbal medicinal product for use in specified indications exclusively based upon long-standing use.
Mutagenicity and genotoxicity of thyme essential oil and its main components, thymol and carvacrol, have been assessed in a number of studies on both prokaryotic and eukaryotic in vitro and in vivo experimental systems. The studies have many weaknesses, findings are often contradictory and reporting does not always contain sufficient details, which make interpretation difficult and conclusion equivocal. The herbal substance used in mutagenicity/genotoxicity studies was not in compliance with European pharmacopoeia Monograph limits. For the oral use of thyme oil, adequately performed mammalian cell studies are needed for the assessment of the genotoxicity. However, the use of thyme oil for cutaneous use and as a bath additive can be regarded as safe when administered in the recommended posology and duration of use.

Tests on reproductive toxicity and carcinogenicity have not been performed.

Safety during pregnancy and lactation has not been established. In the absence of sufficient data, the use during pregnancy and lactation is not recommended.

The data on safety are considered sufficient to support an European Union list entry for the cutaneous use and use as bath additive of thyme oil for the relief of symptoms in coughs and colds.

No constituent with known therapeutic activity or active marker can be recognised by the HMPC.

Therapeutic area: Cough and cold

Annex

List of references