

24 November 2021 EMA/HMPC/179590/2018 Committee on Herbal Medicinal Products (HMPC)

Assessment report on *Trigonella foenum-graecum* L., semen

Final – Revision 1

Herbal substance(s) (hin	omial scientific name of		
Herbal substance(s) (binomial scientific name of the plant, including plant part)		Trigonella foenum-graecum L., semen	
Herbal preparation(s)		a) Comminuted herbal substance	
		b) Powdered herbal substance	
		c) Dry extract (DER 4:1), extraction solvent: ethanol 20% V/V	
		d) Soft extract (DER 5-6:1), extraction solvent: ethanol 60% V/V	
Pharmaceutical form(s)		Herbal substance or comminuted herbal substance as herbal tea for oral use.	
		Herbal preparations in solid dosage forms for oral use.	
		Herbal substance or powdered herbal substance for infusion for cutaneous use.	
First assessment	Rapporteur	A. Sawaya	
	Peer-reviewer	P. Claeson	
Revision	Rapporteur	C. Cavaleiro / A. Núñez / O. Palomino	
	Peer-reviewer	E. Svedlund	

Based on Article 16d(1), Article 16f and Article 16h of Directive 2001/83/EC (traditional use)

Official addressDomenico Scarlattilaan 61083 HS AmsterdamThe NetherlandsAddress for visits and deliveriesRefer to www.ema.europa.eu/how-to-find-usSend us a questionGo to www.ema.europa.eu/contactTelephone +31 (0)88 781 6000

question Go to www.ema.europa.eu/contact
 Telephone +31 (0)88 781 6000
 An agency of the European Union

 © European Medicines Agency, 2022. Reproduction is authorised provided the source is acknowledged.

Table of contents

Table of contents Error	
1. Introduction	4
 1.1. Description of the herbal substance(s), herbal preparation(s) or co 1.2. Search and assessment methodology 	
2. Data on medicinal use	
2.1. Information about products on the market	5
2.1.1. Information about products on the market in the EU/EEA Member	
2.1.2. Information on products on the market outside the EU/EEA	8
2.2. Information on documented medicinal use and historical data from	ı literature8
2.3. Overall conclusions on medicinal use	
3. Non-Clinical Data	
3.1. Overview of available pharmacological data regarding the herbal s preparation(s) and relevant constituents thereof	
3.1.1. Primary pharmacodynamics	
3.1.2. Secondary pharmacodynamics	
3.1.3. Safety pharmacology	
3.1.4. Pharmacodynamic interactions	27
3.1.5. Conclusions	27
3.2. Overview of available pharmacokinetic data regarding the herbal s preparation(s) and relevant constituents thereof	
3.3. Overview of available toxicological data regarding the herbal subst preparation(s) and constituents thereof	:ance(s)/herbal 28
3.3.1. Single dose toxicity	
3.3.2. Repeat dose toxicity	
3.3.3. Genotoxicity	
3.3.4. Carcinogenicity	
3.3.5. Reproductive and developmental toxicity	
3.3.6. Local tolerance	43
3.3.7. Other special studies	
3.3.8. Conclusions	45
3.4. Overall conclusions on non-clinical data	
4. Clinical Data	
4.1. Clinical pharmacology	
4.1.1. Overview of pharmacodynamic data regarding the herbal substa including data on relevant constituents	
4.1.2. Overview of pharmacokinetic data regarding the herbal substance including data on relevant constituents	
4.2. Clinical efficacy	
4.2.1. Dose response studies	
4.2.2. Clinical studies (case studies and clinical trials)	
4.3. Clinical studies in special populations (e.g. elderly and children)	65
4.4. Overall conclusions on clinical pharmacology and efficacy	65

5. Clinical Safety/Pharmacovigilance	. 65
5.1. Overview of toxicological/safety data from clinical trials in humans	.65
5.2. Patient exposure	. 66
5.3. Adverse events, serious adverse events and deaths	
5.4. Laboratory findings	. 68
5.5. Safety in special populations and situations	
5.5.1. Use in children and adolescents	. 68
5.5.2 Contraindications	. 68
5.5.3 Special warnings and precautions for use	. 68
5.5.4 Drug interactions and other forms of interaction	. 68
5.5.5 Fertility, pregnancy and lactation	. 69
5.5.6 Overdose	. 70
5.5.7 Effects on ability to drive or operate machinery or impairment of mental ability	. 70
5.5.8 Safety in other special situations	. 70
5.6. Overall conclusions on clinical safety	. 70
6. Overall conclusions (benefit-risk assessment)	.71
Annexes	.72

1. Introduction

1.1. Description of the herbal substance(s), herbal preparation(s) or combinations thereof

Herbal substance(s)

Fenugreek seed is rich in mucilage polysaccharides (consisting mainly of galactomannans 25–45%) and contains a small amount of essential oil (0.015%) and a variety of secondary metabolites, including protoalkaloids, trigonelline (up to 0.37%), choline (0.05%), saponins (0.6–1.7%) derived from diosgenin, yamogenin, tigogenin and other compounds; sterols including β -sitosterol; and flavonoids, among which are orientin, isoorientin and isovitexin (WHO, 2007). The nutritional composition of fenugreek seeds is moisture 2.4%, protein 30%, lipids 7%, saponins 4.8%, total dietary fibre 48% (insoluble 28%, soluble 20%), and ash 3.9% (WHO, 2007; ESCOP, 2003; Muralidhara *et al.*, 1999; Bruneton, 1999; Udayasekhara Rao *et al.*, 1996; Paris and Moyse, 1967).

The European Pharmacopoeia does not prescribe any assay (monograph ref. 01/2008:1323 corrected 6.6).

Herbal preparation(s)

Fenugreek seed is commonly used as herbal substance or grounded herbal substance. Additionally, some extracts are produced from the herbal substance by suitable procedures using ethanol 20% V/V or 60% V/V.

• Combination(s)

A combination containing Trigonellae foenugraeci semen is marketed in Poland since 1961: it consists of a paste for preparation of oral solution, containing, per 100 g of product, 67.2 g of combination herbal extract (DER 1:1.3-1.6), extraction solvent: ethanol 45% V/V of Agropyri rhizoma 12.5 parts, Allii cepae squama 5.0 parts, Betulae folium 10.0 parts, Trigonellae foenugraeci semen 15.0 parts, Petroselini radix 17.5 parts, Solidaginis herba 5.0 parts, Equiseti herba 15.0 parts, Levistici radix 10.0 parts, Polygoni avicularis herba 15.0 parts. This combination will be not considered in current assessment report.

1.2. Search and assessment methodology

This assessment report resulted from a revision of that previously issued (EMA/HMPC/146220/2010) considering the decision of HMPC (24 July 2018) on the need of revision following relevant updates from data published in the literature between 2011 and 2018.

A literature search with the web engines Google and Google Scholar in the scientific databases Web of Science, PubMed, Science Direct, Clinical Key, Cochrane Database of Systematic Reviews and in the medical or toxicological database Toxline was performed using the terms "*Trigonella*" or "fenugreek" (2011-2020).

Furthermore, the following pharmacovigilance resources were used: data from EU and non-EU regulatory authorities, European database for suspected adverse drug reaction reports.

Data from EU and non-EU regulatory authorities: assessment report on *Trigonella foenum-graecum* L. (EMA/HMPC/146220/2010).

No data was provided by the interested parties.

2. Data on medicinal use

2.1. Information about products on the market

2.1.1. Information about products on the market in the EU/EEA Member States

Table 1 abridges information provided by the National Competent Authorities on medicinal products on the market in the European Union (EU)/European Economic Area (EEA) Member States containing Trigonellae foenugraeci semen or its preparations as single active substance.

In Austria, Belgium, Croatia, Czech Republic, Denmark, Finland, Ireland, Latvia, Lithuania, Malta, Portugal, Romania, Slovakia, Slovenia, Spain, Sweden, The Nederland's and United Kingdom there are no authorised or registered medicinal products on market.

Information on medicinal products marketed in the EU/EEA

Active substance	Indication	Pharmaceutical form, strength, posology, duration of use	Regulatory status (date, Member State)
<i>Trigonella foenum– graecum L.,</i> semen	a) Internal use: loss of appetite	a) 2 g comminuted herbal substance is taken with liquid 3 times daily, before meals	Standard Marketing Authorisation, WEU (1996, Germany)
	b) External use: symptomatic treatment of localised inflammations	 b) As a decoction preparation for cutaneous use: 50 g powdered herbal substance is cooked with 250 ml water for 5 min and used as a cataplasm 1 time daily 	
<i>Trigonella foenum – graecum L.,</i> semen	a) Internal use: covering agent in intestine (in different intestinal irritations)	Decoction for oral use: 1 spoon (8 g) in a glass of water (200-250 ml), boiled 15 min 2–3 times daily	Listed for use in pharmacies at least since 1962. Certified in 1994, 2000, 2005. TUR, 2008, Poland
	b) Internal use: loss of appetite	1-2 teaspoons (3-6 g)before meals.1-6 g daily1.6 g 3 times daily	

Table 1: Overview of data obtained from marketed medicinal products

Active substance	Indication	Pharmaceutical form, strength, posology, duration of use	Regulatory status (date, Member State)	
	c) External use: inflammation (rushes, furunculosis) as a healing aid	Decoction (50 g of seeds boiled for 5 min in 250 ml of water) for cutaneous use on a form of cataplasm (warm impregnated dressing). Applied on the affected		
		skin, 2–3 times daily.		
<i>Trigonella foenum – graecum L.,</i> semen	a) Internal use:	Adults and the elderly:	Since 1992, Poland	
graecum L., semen	appetite promotion	Infusion for oral use:		
		1 teaspoon (2 g) in a glass of water (250 ml), keep covered for 15 min. Drink the freshly prepared infusion, up to 3 times daily, before meals as an appetite stimulant.		
	b) External use: inflammation (rushes, furunculosis) as a healing aid	Decoction (50 g of seeds boiled for 5 min in 250 ml of water) for cutaneous use on a form of cataplasm (warm impregnated dressing). Applied on the affected		
		skin, 2–3 times daily.		
<i>Trigonella foenum – graecum L., semen</i>	 a) Traditional herbal medicinal product used for temporary loss of appetite 	Herbal substance as a tea preparation: 1 to 6 g daily in divided doses.	1990, France Not in the market now, but included in the French Agency Instructions for Herbal	
	b) Traditional herbal medicinal product for the symptomatic treatment of minor inflammations of the	Herbal substance as an infusion (50 g/250 ml of water) for cutaneous use: the still warm infusion is used in	Medicinal Products (Avis aux fabricants), 1986	

Active substance	Indication Strength, posology, duration of use		Regulatory status (date, Member State)	
	skin	cataplasm		
Herbal substance	Minor local skin inflammations	External use: Up to 50 g daily for cutaneous use as an infusion.	At least since 1992, Spain	
Herbal substance	Used in loss of appetite	Oral use Up to 3 times daily (6 g day).	At least since 1992, Spain	
Dry extract (DER 4:1) extraction solvent: ethanol 20% V/V	Traditional herbal medicinal product used for temporary loss of appetite	295 mg, 2 times daily	1970, France 2003 – 2016, France	
Dry extract (DER 4:1) extraction solvent: ethanol 40% V/V	Traditional herbal medicinal product used for temporary loss of appetite	295 mg, 2 times daily	2016, France	
Soft extract (DER 5- 6:1) extraction solvent: ethanol 60% V/V	Traditional herbal medicinal product used for temporary loss of appetite	500 mg, 2 times daily	1970, France 2003-2016, France	
Soft extract (DER 3.3:1) extraction solvent: ethanol 60% V/V	Traditional herbal medicinal product used for temporary loss of appetite	500 mg, 2 times daily	2016, France	
Powder	Help weight gain	495 mg, 3 to 5 times daily	Marketed in France 1990 – 2011	
Powder	Used in loss of appetite	Oral use 1100 mg, 3 times daily	1990, Spain	
Powder	Used in loss of appetite	Oral use 380 to 760 mg, 3 times daily	1992 – 2017 (since 2017 it is marketed as a Food supplement), Spain	

This overview is not exhaustive. It is provided for information only and reflects the situation at the time when it was established.

Information on relevant combination medicinal products marketed in the EU/EEA

Not applicable.

Information on other products marketed in the EU/EEA (where relevant)

Trigonella foenum–graecum L., semen is currently (2017) marketed in Poland as food supplement to be prepared as an herbal tea "*for securing digestive comfort"*, "*help in controlling cholesterol and blood glucose level"*, "*strengthen immunological system"* and "*valuable antioxidant"*.

The marketing authorisation in 1992 in Spain was switched to a food supplement in 2017 and is still on the market to promote appetite.

This overview is not exhaustive.

2.1.2. Information on products on the market outside the EU/EEA

Not applicable.

2.2. Information on documented medicinal use and historical data from literature

Fenugreek (*Trigonella foenum-graecum* L., Fabaceae) originates in India and Northern Africa. The medicinally used plant part of fenugreek is the seed.

An annual plant, fenugreek height is 20-60 cm. The leaves and seeds, which mature in long pods, are used to prepare extracts or powders for medicinal use. Applications of fenugreek were documented in ancient Egypt, where it was used in incense and to embalm mummies. In modern Egypt, fenugreek is still used as a supplement in wheat and maize flour for bread-making. In ancient Rome, fenugreek was purportedly used to aid labour and delivery. In traditional Chinese medicine, fenugreek seeds are used as a tonic, as well as a treatment for weakness and oedema of the legs. In India, fenugreek is commonly consumed as a condiment and used medicinally as a lactation stimulant. There are numerous other folkloric uses of fenugreek, including the treatment of indigestion and baldness.

Fenugreek is part of the ayurvedic pharmacopoeia and used in arthritis and spondylosis, adjunct in diabetes mellitus and hyperlipidaemia (Selected Medicinal Plants of India, 1992).

The medicinal use of fenugreek seed to stimulate the appetite is documented at least since 1908 in the Indian Materia Medica: the powdered seeds are used to stimulate the appetite with the daily dosage of two teaspoonfuls. The same indication is included in Paris and Moyse (1967), with no posology.

An internal use as adjuvant therapy in diabetes mellitus, anorexia, as an adjunct to a low-fat diet in the treatment of mild to moderate hypercholesterolemia and an external use in case of furunculosis, ulcers and eczema are mentioned in the ESCOP (European Scientific Cooperative on Phytotherapy) monograph.

According to the ESCOP monograph, available dosage recommendations for the powdered drug are the following:

- For internal use, in adults, as adjuvant therapy in diabetes or for hypercholesterolaemia, 25 g of powdered seeds or equivalent preparations daily; for lack of appetite, 1-6 g of powdered drug up to 3 times daily with water before meals.
- For external use, in adults, as an emollient 50 g of powdered seeds boiled in 250 ml of water for 5 min then applied as a warm moist poultice.

According to the World Health Organisation (WHO) monograph, available dosage recommendations are the following:

• For internal use, average daily dose, cut or crushed seed, 6 g or equivalent of preparations; herbal tea: 0.5 g of cut seed macerated in 150 ml cold water for 3 h, several cups.

Also, the Commission E monograph (Blumenthal, 1998) includes the use of fenugreek preparations for the lack of appetite:

- Cut/crushed seed with a daily dose of 6 g.
- Macerate, prepared with 0.5 g of herbal substance in 150 ml of cold water for 3 h and then, filtered. To be drunk several times daily.

The use of the macerate, with the same indication and posology is also included in other textbooks such as the Wichtl "Herbal Drugs and Phytopharmaceuticals" (1994) and the PDR for Herbal Medicines (2004).

A summary of historical data on the use of fenugreek is included in Table 2.

Traditional Use strengt relevan		Pharmaceutical form, strength (where relevant), posology, duration of use	Reference	
Oral use		·		
Powder	Stimulate the appetite	0.25-0.50 g powder	Paris and Moyse,	
Liquid extract		0.5-2 g liquid extract	1967.	
		(no complete data on posology, duration of use or liquid extract preparation)		
Cut/crushed seed	Stimulate the appetite	6 g per day	Blumenthal, 1990	
Cut seed	seed			
Cut seed	Stimulate the appetite	Macerate: 0.5 g cut seed macerated in 150 ml cold water for 3 h; strain. Drink several cups daily	Blumenthal, 1990	
Cut/crushed seed	Stimulate the appetite	Stimulate the appetite 6 g per day		
Cut/crushed seed	Stimulate the appetite	6 g per day	Blumenthal, 1990	
Cut seed		Macerate: 0.5 g cut seed macerated in 150 ml cold water for 3 hours; strain. Drink several cups daily		
Seed	d Stimulate the appetite 1-6		Barnes <i>et al.,</i> 2007	

Table 2: Overview of historical data

Herbal preparation	Documented Use / Traditional Use	Pharmaceutical form, strength (where relevant), posology, duration of use	Reference
Oral use	·	•	
		3 times daily	
Powdered seeds	Adjuvant in diabetes or hypercholesterolemia	25 g daily	Raghuram <i>et al.,</i> 1994 Sharma <i>et al.,</i> 1996a, 1996b
Powdered seeds	Lack of appetite	1-6 g or equivalent, 3 times daily	Al-Habori <i>et al.,</i> 1998
External use		•	1
Powdered drug	Local inflammation	50 g boiled for 5 min with ¼ litre water and applied as a moist warm poultice	Blumenthal, 1990 Hänsel <i>et al.,</i> 1994 Wichtl, 2002 PDR, 2006
Seeds	Emollient and vulnerary	No data	Barnes <i>et al.,</i> 2007

2.3. Overall conclusions on medicinal use

A summary of evidence on period of medicinal use of fenugreek is included in Table 3.

Herbal preparation Pharmaceutical form	Indication	Strength Posology	Period of medicinal use
Dry extract (DER 4:1) extraction solvent: ethanol 20% V/V	Traditional herbal medicinal product used for temporary loss of appetite	295 mg, 2 times daily	Marketed in France 1970- 2016
Soft extract (DER 5-6:1) extraction solvent: ethanol 60% V/V	Traditional herbal medicinal product used for temporary loss of appetite	500 mg, 2 times daily	Market in France 1970- 2016
Herbal substance	Loss of appetite	Cut/crushed seed: 1-2 g with liquid, 3 times daily and before meals	Poland, at least since 1962 France, 1990 Spain, 1992 Germany, 1996 Hagers Handbook, 1994

Herbal preparation Pharmaceutical form	Indication	Strength Posology	Period of medicinal use
			Wichtl 2002
		Herbal substance as a tea preparation: 1 to 6 g daily in divided doses Macerate: 0.5 g cut seed macerated in 150 ml	France, 1990 Poland, 1992 Included in the French Agency Instructions for Herbal Medicinal Products (Avis aux fabricants), 1986 Blumenthal, 1990 Wichtl, 1994
		cold water for 3 hours, strain. Drink several cups daily	WHO, Vol 3, 2007
Herbal substance and powdered herbal substance	In skin inflammations, as emollient, coating and for skin healing	External use: 50 g of seeds, bring to the boil 5 min in 250 ml of water, use the obtained warm pulp as cataplasm, 2 to 3 times daily	Poland, at least since 1962 France, 1990 Spain, 1992 Germany, 1996 Blumenthal, 1990 Wichtl, 1994 ESCOP, 2nd ed. PDR, 2006
Powder	Loss of appetite	495 mg, 3-5 times daily 1100 mg, 3 times daily 380-760 mg, 3 times daily	France, 1990 Spain, 1990 Spain, 1992

Historical data and documented period of use in the EU/EEA support the evidence of traditional use of:

For oral use in cases of temporary loss of appetite: the herbal substance or comminuted herbal substance: 1-2 g with liquid 3 times daily, before meals; herbal substance as a tea preparation, 1 to 6 g daily, before meals; herbal substance as a macerate: 0.5 g cut seed macerated in 150 ml cold water for 3 h, strain and drink several cups daily; the soft extract (DER 5-6:1), extraction solvent: ethanol 60% V/V, 500 mg, 2 times daily; the dry extract (DER

4:1), extraction solvent: ethanol 20% V/V, 295 mg, 2 times daily; and the powder: 380-1100 mg, 3 times daily.

- For cutaneous use for the symptomatic treatment of minor inflammations of the skin: the herbal substance as an infusion or decoction (50 g/250 ml of water), 2-3 times daily.

3. Non-Clinical Data

3.1. Overview of available pharmacological data regarding the herbal substance(s), herbal preparation(s) and relevant constituents thereof

3.1.1. Primary pharmacodynamics

A summary of the main non-clinical data/conclusions of fenugreek is included in Table 4.

Herbal preparation tested	Strength Posology	Experimental model	Reference	Main non-clinical conclusions
Comparable/similar preparations to preparations of the monograph		<u>.</u>		
Hydro-ethanolic extract, containing 12.5% steroid saponins, 4.8% free amino acids, 0.002% 3- hydroxy-4,5-dimethyl- 2(5H)-furanone (HDMF) – no protein and lipids. Obtained from Monal Laboratories, Palaiseau, France	Oral use (diet): 10 and 100 mg per day, per 300 g body weight Up to 14 days	In vivo (rat): <u>Parameters</u> <u>monitored:</u> Food intake, weight gain Motivation to eat (food-rewarded runway behaviour) Preventing effect on d-fenfluramine- induced anorexia Metabolic studies (blood glucose, plasma insulin, plasma glucagon, triglycerides and total + free cholesterol levels)	Petit <i>et al.,</i> 1993	<pre>↑food intake; the intensity of the effect was similar between treated groups. Reversible 3-5 days after treatment cessation. ↑body weight gain; the intensity of the effect was similar between treated groups. ↑motivation to eat. ↑plasma insulin. ↓plasma total cholesterol, ↓ HDL free cholesterol, ↓ VLDL-LDL total cholesterol. No preventative effect on <i>d</i>-fenfluramine- induced anorexia.</pre>
<i>Trigonella foenum- graecum</i> seeds dry extract, ethanol 70%	Cutaneous application of dry	<i>In vivo</i> (albino rat): Excision and incision	Muralidharan <i>et al.,</i> 2016	Significant increase in cell proliferative activity and wound healing for

Table 4: Overview of the main non-clinical data/conclusions

Herbal preparation tested	Strength Posology	Experimental model	Reference	Main non-clinical conclusions
(no details on DER)	hydroalcoholic extract as ointments at 5 or 10%	wound models 14 days		the 10% preparation.
Other preparations or substances				
Trigonella foenum- graecum seeds methanol (MeOH) extract and Isolated steroidal saponins	Isolate steroidal saponin glycosides: 0.1-100 μM	In vitro Cultured cell lines (murine melanoma B16F1 cells)	Kawabata <i>et</i> <i>al.,</i> 2011	Suppression of pro- inflammatory cytokines Restrain of the intracellular synthesis of melanin.
Diosgenin	Oral use: Low protein diet containing 0 (control), 0.05, 0.1 or 0.2% (w/w) of diosgenin 8 weeks	<i>In vivo</i> Male hairless mice (Hos:HR-1) – low collagen skin mouse model	Haratake <i>et</i> <i>al.,</i> 2017	Diosgenin led to a dose-dependent improvement in skin collagen content by shifting the dynamics o the fibroblasts.

Several non-clinical pharmacology studies have been performed with comparable preparations to the ones in the monograph or with isolated components for both oral and cutaneous use. Results are in line with the traditional uses, reporting effects that can be related to the increase of appetite dose-independent (Petit *et al.*, 1993) and effects on mechanisms of skin inflammation and skin healing which are dose or concentration dependent (Muralidharan *et al.*, 2016, Haratake *et al.*, 2017 and Kawabata *et al.*, 2011).

3.1.2. Secondary pharmacodynamics

Hypoglycaemic effect

Most of the data found in the literature were performed in view of the use of fenugreek seeds in diabetes mellitus. Data are summarised in Table 5.

Fenugreek seeds as well as some water and ethanol extracts were shown to have a hypoglycaemic effect in normal as well as in diabetic models of mice and rats. The seed powder was not tested in normal and diabetic mice, however aqueous and ethanol extracts induced the same effect. The hypoglycaemic effect of fenugreek seeds was also tested in a non-rodent species, namely the dog. The lipid extract was shown to have no effect on blood glucose levels. The remaining part termed defatted fraction, and more precisely the testa and endosperm, was shown to be the active fraction of the seed on glycaemia.

The mechanism underlying this effect is not clearly established. A widely found hypothesis is that fenugreek interferes with intestinal glucose absorption as a result of local effects at the gastrointestinal level mainly due to dietary fibres contained in fenugreek seeds and/or viscosity of the preparation. However, Abajnoor and Tilmisany (1988) excluded the involvement of gastrointestinal action of fibre to explain the hypoglycaemic effect they reported in mice because i) they used fasting mice and ii) they administered an extract instead of the whole seed. Instead, they suggested that the mechanism of antidiabetic action of fenugreek seeds may be similar to that of tolbutamide, i.e., stimulation of pancreatic insulin secretion, but did not exclude other pathways. Yadav *et al.*, (2008) also suggested that fenugreek seeds, more precisely the water extract, acts as an insulin secretor but unfortunately, they did not monitor insulin levels in their experiments. Interestingly, increased insulin secretion was observed in the experiments conducted by Petit *et al.*, (1993); Devi *et al.*, (2003); Eidi *et al.*, (2007). Further, Vijayakumar and Bhat (2008) also report that the hypoglycaemic effect of fenugreek seeds, at least in part, is contributed by its action on the modulation of insulin secretion.

Other authors suggested that fenugreek inhibits intestinal glycosidase or digestive enzymes (Riyad *et al.*, 1988 cited by Eidi *et al.*, 2007, Wong *et al.*, 1985 and Edwards *et al.*, 1985 both cited by Zia *et al.*, 2001). However, Vijayakumar and Bhat (2008) mention that this mechanism could not explain the hypoglycaemic effect they observed in mice because they used the intraperitoneal route of administration. The ability of fenugreek seeds to modulate key glucose metabolising enzymes such as hexokinase (glycolysis), glucose-6-phosphatase or fructose-1,6-bisphosphatase (gluconeogenesis) was also considered as a possible mechanism (Devi *et al.*, 2003; Raju *et al.*, 2001; Vijayakumar and Bhat, 2008). Mohammadi *et al.* (2016) reported positive effects on insulin resistance though an insulin-like effect and increase in adiponectin levels and peroxisome proliferator-activated receptor gamma (PPARG) protein expression.

In vitro investigations conducted by Vijayakumar *et al.*, (2005) showed that fenugreek seed extract stimulates the insulin signalling pathway resulting in enhanced glucose transporter type 4 (GLUT4) translocation to the cell surface in Chinese hamster ovary (CHO) cells and so enhanced mediated glucose uptake. It was notably shown in human hepatocellular carcinoma HepG2 cells that tyrosine phosphorylation of insulin-receptor β (IR- β) is activated thus, subsequently enhancing tyrosine phosphorylation of IRS-1 and p85 subunit of PI3-kinase. Naicker *et al.* (2016) demonstrated that antihyperglycemic effects were similar to via enhanced insulin signalling, gene expression, and increasing glucose uptake.

In addition, the compound(s) responsible for the hypoglycaemic effect is (are) not clearly identified. The main results found in the literature are summarised in Table 5. Zia *et al.* (2001) concluded that the substance responsible for hypoglycaemic activity is probably polar in nature. Ribes *et al.* (1984, 1986, 1987) showed that the hypoglycaemic effect of fenugreek seeds in diabetic dogs is due to the defatted fraction, and more precisely the defatted fraction containing testa and endosperm. The lipid extract had no such effect (Ribes *et al.*, 1984; Valette *et al.*, 1984).

Other authors (Korthikunta *et al.*, 2015; Gautam *et al.*, 2016) reported the enhanced insulinstimulated glucose transport induced by 4-hydroxyisoleucine. Chou *et al.* (2017) reported the enhanced response of physiological levels of Glucagon-like peptide-1 by an unrevealed compound (N55) isolated from *Trigonella foenum-graecum* seeds.

Herbal preparation tested	Strength Posology	Experimental model	Reference	Main non-clinical conclusions
Comparable/similar preparations to preparations of the monograph				
Aqueous extract from seeds	Single dose, 1-5 mg/kg Intraperitoneal	<i>In vivo</i> Diabetic mice (AXN)	Vijayakumar <i>et</i> <i>al.,</i> 2005	Hypoglycaemic effect in diabetic mice comparable to that of 1.5 U/kg insulin (at 15 mg/kg)
Aqueous extract from seeds	15 mg/kg per day Intraperitoneal 5 days	<i>In vivo</i> Diabetic mice (AXN)	Vijayakumar and Bhat, 2008	Hypoglycaemic effect in diabetic mice
Aqueous extract from seeds	Single dose, 15 mg/kg Intraperitoneal	In vivo Normal mice	Vijayakumar <i>et</i> <i>al.,</i> 2005	Hypoglycaemic effect in normal mice
Aqueous extract from seeds	Single dose, 15 mg/kg Intraperitoneal	In vivo Normal mice	Vijayakumar and Bhat, 2008	Hypoglycaemic effect in normal mice
Aqueous extract from seeds	Single dose, 15 mg/kg Intraperitoneal	<i>In vivo</i> Diabetic	Vijayakumar and Bhat, 2008	Hypoglycaemic effect in diabetic mice comparable to that of 1.5 U/kg insulin; enhanced hepatic metabolism of glucose
Decoction Ethanol extract from seeds	Single dose Decoction: 0.5 ml; Extract: 200 mg/kg, Oral use	<i>In vivo</i> Normal and diabetic (AXN)	Ajabnoor and Tilmisany, 1988	Hypoglycaemic effect in normal and diabetic mice
Aqueous extract from seeds	Single dose, 500 mg/kg Oral use	<i>In vivo</i> Normal mice	Zia <i>et al.,</i> 2001	Hypoglycaemic effect in normal mice

Table 5: Overview of the main studies on hypoglycaemic effects

Herbal preparation tested	Strength Posology	Experimental model	Reference	Main non-clinical conclusions
Aqueous extract from seeds	Single dose, 50 mg/kg	<i>In vivo</i> Normal rat	Yadav <i>et al.,</i> 2008	Hypoglycaemic effect in normal rats
Aqueous extract from seeds	440 mg/kg per day (gavage) 6 weeks	<i>In vivo</i> Diabetic rat (STZ)	Xue <i>et al.,</i> 2007	Hypoglycaemic effect in diabetic rats
Ethanol extract from seeds	2000 mg/kg per day Oral use (gavage) 21 days	<i>In vivo</i> Diabetic rat (AXN)	Vats <i>et al.,</i> 2002	Hypoglycaemic effect in diabetic rats
Ethanol extract from seeds	Single dose, 1000 mg/kg per day Oral use (gavage)	<i>In vivo</i> Normal rat	Vats <i>et al.,</i> 2002	Hypoglycaemic effect in normal rats Lack of effect after oral glucose load in normal rats (suggests no effect on glucose absorption from the GI tract)
Ethanol (80%) extract from seeds	250 mg/kg per day Oral use (gavage) 14 days	<i>In vivo</i> Normal and diabetic (STZ)	Eidi <i>et al.,</i> 2007	Hypoglycaemic effect + stimulation of insulin secretion in diabetic rats, but not in normal rats Favourable effect on cholesterol and triacylglycerol and on hepatic transaminases in diabetic rats
Powdered seeds	12.5 g/kg per day (5% in diet) Oral (diet) 21 days	<i>In vivo</i> Diabetic rat (AXN)	Raju <i>et al.,</i> 2001	Hypoglycaemic effect in diabetic rats; modulation of key glucose metabolising enzymes
Powdered seeds	2000 mg/kg per day Oral (diet)	Normal and diabetic rats (AXN)	Khosla <i>et al.,</i> 1995	Hypoglycaemic effect in normal and diabetic rats

Herbal preparation tested	Strength Posology	Experimental model	Reference	Main non-clinical conclusions
	1 and 2 weeks			
Powdered of defatted seeds	1250 mg/kg per day 9 days	Normal and diabetic rats (STZ)	Mondal <i>et al.,</i> 2004	Hypoglycaemic effect in diabetic rats
Powdered of defatted seeds Preparation containing 3.9% ash, 30.3% crude proteins, 53.9% dietary fibres (19.0% gum, 23.6% hemicelluloses, 8.9% cellulose, 2.4% lignin), 4.8% steroid saponins	1860 mg/kg per day Oral (diet) 8 days	Normal and diabetic dogs (AXN)	Ribes <i>et al.,</i> 1984 Valette <i>et al.,</i> 1984	Hypoglycaemic effect in normal and diabetic dogs – attributed in part to the high percentage of dietary fibres of the preparation
Dry extract, (DER not given) solvent water	1000 mg/kg per day intragastric Injection 4 weeks	In vivo Wistar rats insulin resistant 60% fructose diet	Mohammadi <i>et</i> <i>al.,</i> 2016	Positive effects on insulin resistance though an insulin- like effect, increase in adiponectin levels and PPARG protein expression
Aqueous extract (details not accessed)	100 ng/ml	<i>In vitro</i> HepG2 cells	Naicker <i>et al.,</i> 2016	Antihyperglycemic effects similar to via enhanced insulin signalling, gene expression, and increasing glucose uptake
Other preparations				
Methanol extract from seeds	Single dose, 1000 mg/kg Oral use	In vivo Normal mice	Zia <i>et al.,</i> 2001	Hypoglycaemic effect in normal mice
Aqueous, ethanol, methanol, hexane and chloroform extracts from seeds	Single dose, 200 mg/kg Oral use	<i>In vivo</i> Normal rats	Yadav <i>et al.,</i> 2008	Hypoglycaemic effect reported for aqueous ethanol and methanol extracts in

Herbal preparation tested	Strength Posology	Experimental model	Reference	Main non-clinical conclusions
				normal rats
Defatted fractions from seeds testa + endosperm: preparation containing 10.0% moisture, 3.0% ash, 6.8% crude proteins, 79.4% dietary fibres (32.4% gum, 28.6% hemicelluloses, 14.6% cellulose, 3.8% lignin), 0.6% steroid saponins	1145 mg/kg Oral (diet) 21 days	Diabetic dogs (AXN)	Ribes <i>et al.,</i> 1986 Ribes <i>et al.,</i> 1987	Hypoglycaemic effect in diabetic dogs - dietary fibres may play a role
Lipid extract from seeds	>105 mg/kg per day Oral (diet) 8 days	In-vivo Normal dogs	Ribes <i>et al.,</i> 1984 Valette <i>et al.,</i> 1984	None
Powdered leaf	>12.5% body weight in food 15 days	<i>In vivo</i> Diabetic rat (AXN)	Jelodar <i>et al.,</i> 2005	No effect of treatment on the parameters monitored; the authors explain that this may be due to the plant part used (leaf instead of seed)
Powdered Leaf	500 mg/kg per day in food 45 days	<i>In vivo</i> Diabetic rat (STZ)	Devi <i>et al.,</i> 2003	Hypoglycaemic effect in diabetic rats + stimulation of insulin secretion
Isolated compounds				
4-hydroxyisoleucine isolated from fenugreek seeds Synthetic 4- hydroxyisoleucine derivatives	10 μM	In vitro L6 rat skeletal muscle cells expressing ratGLUT4	Korthikunta <i>et</i> <i>al.,</i> 2015	Glucose uptake activity 4-hydroxyisoleucine (10 µM) enhanced the glucose uptake by 38.67% Some synthetic derivatives are more

Herbal preparation tested	Strength Posology	Experimental model	Reference	Main non-clinical conclusions
				active.
4-Hydroxyisoleucine (4-HIL) isolated from the seeds of <i>Trigonella foenum- graecum</i>	10 µM for 24 hours	<i>In vitro</i> C2C12 myoblasts cultures	Gautam <i>et al.,</i> 2016	4-hydroxyisoleucine enhanced insulin- stimulated glucose transport rate in a dose-dependent manner.
N55- Compound isolated from <i>Trigonella foenum- graecum</i>	Intraperitoneal injection (dose not given)	In vivo Fasted and non- fasted mice Monitoring insulin and GLP-1 plasma levels	Chou <i>et al.,</i> 2017	N55 lowers plasma glucose according to prandial status by enhancing the response of physiological levels of GLP-1.

A summary of compounds claimed to be involved in the hypoglycaemic activity of fenugreek seeds is included in Table 6.

Compound	Reference	Claimed mechanism of action or effect
4-hydroxyisoleucine	Eidi <i>et al.,</i> 2007	Insulinotropic property in vitro
	Korthikunta <i>et</i>	Stimulation of intestinal secretion in vivo
	<i>al.,</i> 2015	Improvement of glucose tolerance in diabetic rats and dogs
	Gautam <i>et al.,</i> 2016	Enhancement of glucose uptake and insulin-stimulated glucose transport rate
Alkaloids	Eidi <i>et al.,</i> 2007	Inhibition of glucose uptake in vitro
Arginine	Eidi <i>et al.,</i> 2007	Antidiabetic and hypoglycaemic effect
Coumarin	Shani <i>et al.,</i> 1974 ^{a, b}	Main hypoglycaemic constituent of fenugreek seeds (from Shani <i>et al.,</i> 1974)
Nicotinic acid	Shani <i>et al.,</i> 1974 ª	Main hypoglycaemic constituent of fenugreek seeds (from Shani <i>et al.,</i> 1974)
Steroid saponins	Eidi <i>et al.,</i> 2007	Inhibition of glucose uptake in vitro
	Yadav <i>et al.,</i> 2008	The highest hypoglycaemic activity observed with the water extract may be related to higher content of saponins which are water soluble and previously reported for hypoglycaemic potential
Tannins	Yadav <i>et al.,</i>	The highest hypoglycaemic activity observed with the water

Table 6: Compounds claimed to be involved in the hypoglycaemic activity of fenugreek seeds

Compound	Reference	Claimed mechanism of action or effect
	2008	extract may be related to higher content of tannins which are water soluble and previously reported for hypoglycaemic potential
Trigonelline	Eidi <i>et al.,</i> 2007	Inhibition of glucose uptake in vitro
	Shani <i>et al.,</i> 1974 ^{a, b}	Hypoglycaemic betaine
Tryptophan	Eidi <i>et al.,</i> 2007	Antidiabetic and hypoglycaemic effect

^a Cited by Abajnoor and Tilmisany, 1988

^b Cited by Ali et al., 1995

Hypolipidaemic effect

Investigations were conducted on the ability of fenugreek seed to lower blood lipids levels. The data are summarised in Table 7.

In normal rats, Petit et al. (1993) observed decreased levels of total cholesterol and very-low-density lipoprotein and low-density lipoprotein (VLDL-LDL) total cholesterol in normal rats given a hydroethanolic extract. No significant change was reported for levels of high-density lipoprotein (HDL) cholesterol. In diabetic rats, a hypolipidaemic effect with favourable impact on HDL-cholesterol was shown by Xue *et al.* (2007). Similar results were obtained by Eidi *et al.*, (2007) and Chaturvedi *et al.* (2013). Belguith-Hadriche *et al.* (2013) reported the same effect regarding an ethyl acetate fraction. Kumar *et al.* (2014) reported the reduction of fat accumulation and of dyslipidaemia in Wistar rats following 28 days of administration of water extract (0.5 and 1.0 g/kg by day).

In normal and diabetic dogs, a hypocholesterolaemic effect was reported for the defatted fraction of fenugreek seeds. Further work in diabetic dogs showed a hypolipidaemic effect (decreased cholesterol and/or triglycerides) for the defatted fraction containing testa and endosperm shown to induce also hypoglycaemic effects. However, the defatted fraction containing cotyledon and axes also showed a hypolipidaemic effect in this experimental model, whereas it did not induce a hypoglycaemic effect. The authors conclude that saponins may play a role but exclude any effect of amino acids on lipidaemia (Ribes *et al.,* 1984, 1986, 1987; Valette *et al.,* 1984).

Moriwaki *et al.* (2014) suggested that the hypolipidemic effect of fenugreek can be mediated by yamogenin since this saponin suppress the triglycerides accumulation and mRNA expression of fatty acid synthesis related genes in hepatocytes.

Herbal preparation tested	Strength Posology	Experimental model	Reference	Main non-clinical conclusions
Comparable/similar preparations to preparations of the monograph				
Hydro-ethanolic extract, containing 12.5% steroid saponins, 4.8% free amino acids, 0.002% 3-hydroxy-4,5- dimethyl-2(5H)- furanone (HDMF) – no protein and lipids. Obtained from Monal	10 and 100 mg per day, per 300 g body weight Up to 14 days Oral (diet)	In vivo (Rat): Metabolic studies (blood glucose, plasma insulin, plasma glucagon, triglycerides and total + free cholesterol levels)	Petit <i>et al.,</i> 1993	Reduction of plasma total cholesterol, HDL free cholesterol and VLDL-LDL total cholesterol.
Laboratories, Palaiseau, France				
Aqueous extract from seeds	440 mg/kg per day (gavage) 6 weeks	In vivo Diabetic rat (STZ)	Xue <i>et al.,</i> 2007	Hypolipidaemic effects in diabetic rats with favourable impact on HDL-cholesterol.
Powdered of defatted seeds Preparation containing 3.9% ash, 30.3% crude proteins, 53.9% dietary fibres (19.0% gum, 23.6% hemicelluloses, 8.9% cellulose, 2.4% lignin), 4.8% steroid saponins	1860 mg/kg per day Oral use (diet) 8 days	Normal and diabetic dogs (AXN)	Ribes <i>et al.,</i> 1984 Valette <i>et al.,</i> 1984	Hypocholesterolaemic effect in normal and AXN-induced hypercholesterolaemic dogs.
Dry extract (DER not given) solvent: water	0.5 and 1.0 g/kg body weight Oral use	In vivo Wistar rats under fat diet 28 days	Kumar <i>et al.,</i> 2014	Reduction of fat accumulation and dyslipidaemia.
Dry extract (DER 66:1) ethanol absolute	50, 100, and 200 mg/kg body weight, during 7 days	In vivo Charles Foster rats, triton or high-fat diet- induced	Chaturvedi <i>et</i> <i>al.,</i> 2013	Dose of 200 mg/kg per day lowered cholesterol (26.19%) and triglycerides (36.6%).

Table 7: Overview of the main studies on hypolipidemic effects

Herbal preparation tested	Strength Posology	Experimental model	Reference	Main non-clinical conclusions
	30 days	hyperlipidaemia		
Other preparations				
Water, methanol, hexane, dichloro- methane and ethyl- acetate (sequentially) extracts No further details given	2.5% of seeds in diet Or 0.125% of extract 16 weeks	In vivo Wistar rats, diet supplemented with 1% cholesterol and 0.1% cholic acid.	Belguith- Hadriche <i>et</i> <i>al.,</i> 2013	Ethyl acetate extract decreased serum total cholesterol, triglycerides and LDL- cholesterol, increasing HDL- cholesterol.
Defatted fractions from seeds. Cotyledons + axes: preparation containing 9.6% moisture, 4.9% ash, 52.8% crude proteins, 6.7% dietary fibres (traces of gum, 4.0% hemicelluloses, 2.1% cellulose, 0.6% lignin), 7.2% steroid saponins	>1126 mg/kg per day (glycaemia) 1126 mg/kg per day (lipids) Oral (diet) 21 days	Diabetic dogs (AXN)	Ribes <i>et al.,</i> 1986 Ribes <i>et al.,</i> 1987	Hypolipidaemic effect (decreased cholesterol and/or triglycerides).
Defatted fractions from seeds. Testa + endosperm: preparation containing 10.0% moisture, 3.0% ash, 6.8% crude proteins, 79.4% dietary fibres (32.4% gum, 28.6% hemicelluloses, 14.6% cellulose, 3.8% lignin), 0.6% steroid saponins	1145 mg/kg Oral (diet) 21 days	Diabetic dogs (AXN)	Ribes <i>et al.,</i> 1986 Ribes <i>et al.,</i> 1987	Hypolipidaemic effect (decreased cholesterol and/or triglycerides); saponins may play a role but not amino acids.
Isolated compounds Yamogenin, isolated	5-10 μM	In vitro	Moriwaki <i>et</i>	Yamogenin
from fenugreek seeds	ο.το hι.ι	Mouse	al., 2014	suppressed the triglycerides

Herbal preparation tested	Strength Posology	Experimental model	Reference	Main non-clinical conclusions
		hepatocytes		accumulation and mRNA expression of fatty acid synthesis- related genes in hepatocytes, suggesting that contributes for the hypolipidemic effect.

Effects of fenugreek on conditions associated to diabetes:

- Jin *et al.* (2014) described the reduction of symptoms of diabetic nephropathy in Sprague-Dawley diabetic rats when treated with a dry water extract (DER not given) from fenugreek seeds.
- Haghani *et al.* (2016) assessed the hypoglycaemic effect of the dry extract, (DER 5:1), solvent water, in diabetic male Wistar rats when administered orally (1.74 g/kg body weight) during 6 weeks. Results showed a beneficial effect by reducing the cardiovascular complications of type 1 diabetes.
- Joshi *et al.* (2015) showed the beneficial effect of an hydroalcoholic extract from fenugreek seeds (quantified to 53.89% of 4-hydroxyisoleucine (other relevant details are not given)) on oxidative stress and pro-inflammatory cytokines in the improvement of exocrine function of diabetes induced by alloxan in diabetic and normal Sprague–Dawley rats.

Anti-Inflammatory activity

- Ahmadiani *et al.* (2001) showed anti-inflammatory effect in the formalin induced rat paw oedema model for a water extract of fenugreek leaves administered orally once for 7 days. The effective dose amounted to 1000 mg/kg per day.
- Parvizpur et al. (2006) lack of inhibitory effect on cyclooxygenase (COX) enzyme.
- Pundarikakshudu *et al.* (2016) reported the reduction in inflammation of the paw in carrageenan and formaldehyde-induced paw oedema by fenugreek seed soft extract, solvent petroleum ether.
- Sharma *et al.* (2017) reported that fenugreek seed extract provides cytoprotection to fibroblasts (bacterial lipopolysaccharide (LPS) inflamed) via a reactive oxygen species independent pathway.
- Piao *et al.* (2017) *Trigonella foenum-graecum* has a significant anti-inflammatory effect on allergic asthma, reducing the collagen deposition and goblet cells, decreasing the high expression of Th2 cytokines and increasing Th1cytokines in bronchoalveolar lavage fluid (BALF) and lung homogenates.
- Ahmadiani *et al.* (2001) described the anti-pyretic effect in hyperthermic rats (injected brewer's yeast) for the same extract administered at 1000 mg/kg by both oral and intraperitoneal routes.
- Murugesan *et al.* (2011) described the cardioprotective effect related to the decrease of thiobarbituric acid reactive substances (TBARS) and enhanced the activities of enzymatic and non-enzymatic antioxidants (SOD, CAT, GPx and GSH) in myocardial infarcted rats.
- Assad and Khan (2017). Methanol extract (200 mg/Kg) induced sedation and skeletal muscle relaxant effects suggesting antianxiety activity on albino mice.

Assessor's comment:

Several studies conducted with fenugreek seeds, different preparations from the seeds or isolated compounds were shown to induce hypoglycaemic effects in various animal models of diabetes. The mechanism underlying the hypoglycaemic effect remains unestablished, but a number of hypotheses were found in the literature: local action at the gastro-intestinal level to lower the absorption of glucose, enhancement of insulin secretion, modulation of glucose metabolism, stimulation of insulin signalling pathway at the cellular level. Similarly, the compound(s) responsible for this effect are currently not identified. A lower number of studies also showed that fenugreek seeds exerted a hypolipidaemic effect in diabetic rats, and in both normal and diabetic dogs. It was also shown in dogs that the active part is the defatted fraction.

Nonetheless, several weaknesses in these secondary pharmacological studies make their interpretation difficult, mainly due to the lack of control groups, the administration of only one dose of the preparation, or doses much higher than those which could be administered for human use or the uncertainty of the real composition of the tested preparation, among others.

Effects on glycaemia, in humans, should not be neglected and the monograph on Trigonella foenumgraecum L., *semen should include the appropriate warnings in regard potential interferences with glycaemia and interactions with treatments for diabetes mellitus.*

3.1.3. Safety pharmacology

Few publications dealing with preclinical safety of fenugreek preparations were found in the scientific literature. A summary is provided in Table 8.

Table 8: Summary of safety pharmacc	logy studies
-------------------------------------	--------------

Reference	Part	Formulation	System	Test system (species, route, dose, duration, parameters)	Noteworthy findings
Abdo and Al-Kafawi 1969	l-Kafawi ethanol	Gastro- intestinal tract	Isolated guinea pig intestine pieces (5 cm). Test solution (2 ml from water or ethanol extract) or control (either water or ethanol) added to a bath containing duodenum pieces in oxygenated Tyrode's solution. Intestinal motility was recorded by means of a light lever on a smoked drum paper moving at slow speed.	<u>Water extract</u> Slight stimulating effect on intestinal motility. <u>Ethanol extract</u> Inhibition of intestinal motility, similar to that observed with ethanol control.	
			Female reproductive tract	Isolated uterus pieces (4 cm) from pregnant and non-pregnant guinea pig. Test solution (2 ml from water or ethanol extract) or control (either water or ethanol) added to a bath containing duodenum pieces in oxygenated Dale's solution. Uterine motility was recorded by means of a light lever on a smoked drum paper moving at slow speed.	Water extractStimulating effect on uterine contractility; the effect is markedly increased on tissues obtained from pregnant animals.Ethanol extractSame results as those obtained with water extract.
			Cardiovascular	Isolated and perfused guinea pig heart. Test solution (2 ml from water or ethanol extract).	<u>Water extract</u> Acceleration of heart beats. <u>Ethanol extract</u> Decrease in heart beats, similar to that observed with ethanol control.

Reference	Part	Formulation	System	Test system (species, route, dose, duration, parameters)	Noteworthy findings
			Cardiovascular and respiratory	Anaesthetised dogs. Blood pressure recorded from carotid artery (manometer). Respiratory movements recorded by using a sphymograph fitted around the chest of animals and connected with a tambour.	No effect reported for both extracts.
Parvizpur <i>et al.,</i> 2006	Leaf	Water extract	Blood	Rabbit platelet-rich plasma. Effect of extract (0.5, 1, 1.5 and 3 mg/ml) on ADP-induced platelet aggregation.	Dose-dependent inhibition of aggregation response to ADP \Rightarrow some antagonistic effect on ADP (in rabbit platelet, COX and arachidonic pathways are not involved in aggregation).

From the studies detailed above, two results may deserve a particular attention:

- A water extract of fenugreek leaves was shown to inhibit the aggregation of rabbit platelets in a concentration-dependent way that is related to some antagonistic effect on adenosine diphosphate (ADP). Nonetheless, this study was conducted with fenugreek leaves, which are not covered by *Trigonella foenum-graecum* L., semen monograph (Parvizpur *et al.*, 2006).
- The uterine stimulant properties reported on pieces of guinea pig uterus (Abdo and Al-Kafawi, 1969) should be viewed in the context of its historical use as an abortifacient or for labour induction that is mentioned by Ulbricht *et al.* (2007).

3.1.4. Pharmacodynamic interactions

No data available.

3.1.5. Conclusions

Pharmacological results are not contradictory to the indications of the traditional use of fenugreek seeds, particularly those related to the increase of appetite and skin healing. Furthermore, hypoglycaemic effects were shown in various animal models of diabetes following the administration of fenugreek seeds. The mechanism underlying the hypoglycaemic effect remains unestablished, but a number of hypotheses were found in the literature: local action at the gastro-intestinal level to lower the absorption of glucose, enhancement of insulin secretion, modulation of glucose metabolism, stimulation of insulin signalling pathway at the cellular level. Similarly, the compound(s) responsible for this effect are currently not identified. However, it was established in diabetic dogs that the active part of fenugreek seeds was the defatted fraction. Nonetheless, there exist several weaknesses in these secondary pharmacological studies which make their interpretation difficult, mainly due to the lack of control groups, the administration of only one dose of the preparation, or doses much higher than those which could be administered for human use or the uncertainty of the real composition of the assayed preparation, among others (see also section 4.2 and 5.5.3).

No specific safety pharmacology studies are available according to current guidelines. However, the uterine stimulant properties reported in guinea pigs with water and ethanolic extracts should be taken into consideration (see also section 3.3.5 and 5.5.5).

3.2. Overview of available pharmacokinetic data regarding the herbal substance(s), herbal preparation(s) and relevant constituents thereof

In vivo

In a rabbit study by Zhao *et al.* (2003), aimed at studying the pharmacokinetics of trigonelline determined by high performance liquid chromatography (HPLC), after post-intragastric administration of fenugreek extract, the pharmacokinetic parameters of one compartment model were half-life, $t_{1/2} = 0.9$ hour, $t_{1/2} = 2.2$ hours, volume of distribution = 0.64 l/kg and AUC = 1.93 mg/min/l.

In the study by Al-Jenoobi *et al.* (2014), rabbits received an 8-days treatment with fenugreek seed powder (300 mg/kg *p.o.*) and then, on 8th day they received a single dose of cyclosporine (30 mg/kg *p.o.*) and carbamazepine (40 mg/kg *p.o.*). Pharmacokinetic parameters (AUC_{0-t}, AUC_{0- ∞}, C_{max}, T_{max}, T_{1/2}, Kel, MRT_{0- ∞}, V_{z/F}, and Cl/F) for cyclosporine and carbamazepine were measured in blood samples at several time points. Results showed no statistically significant difference between pre- and post-treated pharmacokinetic parameters in rabbits. According to the authors, the conclusion should not be extended to the frequent use of fenugreek with narrow therapeutic index drugs (CYP3A and P-glycoprotein substrates) in humans.

In vitro

A standardised hydroalcoholic extract of fenugreek seeds (further details not given) and trigonelline were assessed regarding the potential inhibition of CYP3A4 and CYP2D6 (expressed in terms of IC_{50} values) on rat liver microsome (RLM) and cytochrome P450 isozymes using CYP450-carbon monoxide (CYP450-CO) complex assay and fluorescence assay, respectively (Ahmmed *et al.*, 2015).

The grounded fenugreek seeds were extracted with 70% methanol by cold maceration method and then evaporated to dryness in rotary vacuum evaporator at 45°C to produce a semi-solid residue which was then lyophilised. The extract was solubilised in both ethanol and dimethyl sulphoxide (DMSO)

solvent separately to make a concentration of 1 mg/ml, while trigonelline (0.1 mg/ml) was solubilised in both DMSO and ethanol solvent. Ketoconazole and quinidine served as positive control.

Authors found that both the extract and trigonelline showed a concentration-dependent inhibition on microsome, significantly lower than ketoconazole. The fenugreek extract dissolved in DMSO showed the highest percentage of inhibition ($24.32 \pm 1.46\%$), while trigonelline showed the lowest inhibition ($13.25 \pm 0.76\%$) in ethanol. Thus, the interaction of the extract with pooled microsome was higher than isolated trigonelline.

The IC₅₀ values obtained for the extract (102.65 \pm 2.63 and 142.23 \pm 2.61 µg/ml) and trigonelline (168.73 \pm 4.03 and 180.90 \pm 2.49 µg/ml) showed that the inhibition potential of both preparations with cytochrome isozymes was very low. The slightly superior IC₅₀ values for the isolated trigonelline when compared to the extract may be due to other components present in the extract. IC₅₀ values of the extract were much higher than positive controls ketoconazole and quinidine, this meaning a lower interaction.

Results from this study suggest that fenugreek extract has a low inhibitory potential with the drugmetabolising enzymes (DMEs) (CYP450 enzymes), and no pharmacokinetic concern arose regarding the use of fenugreek (Ahmmed *et al.*, 2015).

Another study conducted to assess the potential inhibitory effect of fenugreek on CYP 450 enzymes was conducted by using dextromethorphan (DEX) based on its CYP2D6- and CYP3A4-mediated metabolism to dextrorphan (DOR) and 3-methoxymorphinan (3-MM), respectively. First of all, the *in vitro* assay incubated DEX (25 μ M) with human liver microsomes and nicotinamide adenine dinucleotide phosphate hydrogen (NADPH) and tested with and without the fenugreek extract at different concentrations. For the *in vivo* study, phase I, 6 subjects received a single dose of DEX (30 mg); in phase II, after washout period, the fenugreek seeds powder was administered for 1 week and DEX was administered with its last dose. Results of the *in vitro* study showed that fenugreek extract at 50 and 100 μ g/ml inhibited CYP2D6 and CYP3A4 activity. *In vivo* results didn't show any significant inhibition of CYP2D6 and CYP3A4 metabolic activity. Thus, results from this publication suggested that fenugreek may not have substantial effect on the metabolic activity of CYP2D6 and CYP3A4 (Al-Jenoobi *et al.*, 2015). Nonetheless, when comparing the concentrations tested and the doses given to the volunteers with the pharmacokinetics study conducted by Zhao *et al.* (2003), the former doses seem to be much lower than the later ones, and thus the results given by the authors shouldn't be considered as conclusive.

3.3. Overview of available toxicological data regarding the herbal substance(s)/herbal preparation(s) and constituents thereof

3.3.1. Single dose toxicity

The available data are summarised in Table 9.

Table 9: Summary of single-dose toxicity studies

Reference	Part	Formulation	Species	Route, dose	Parameters	Noteworthy findings
Muralidhara <i>et al.,</i> 1999	-	Debitterised powder ^a	Mouse (CFT Swiss)	Oral use (gavage) 0, 250, 500, 1000, 2000 mg/kg	Mortality and clinical signs for up to 14 days post dose Body weight, food intake Weight and microscopic examination of liver, lungs, kidneys and spleen	None
Muralidhara <i>et al.,</i> 1999	-	Debitterised powder ^a	Rat (CFT Wistar)	Oral use (gavage) 0, 1000, 2000, 4000 ^b , 5000 ^b mg/kg	Mortality and clinical signs for up to 14 days post dose Body weight, food intake Weight and microscopic examination of liver, lungs, kidneys and spleen	None
Abdel-Barry and Al- Hakiem, 2000	Leaf	Glycosidic extract	Mouse (Wistar) 10/group	Intraperitoneal 0, 200, 400, 500, 800, 1000 mg/kg	Mortality and clinical signs for up to 7 days post dose Body weight, food intake Histopathological examination of liver, kidney, stomach and large intestine	LD ₅₀ =650 mg/kg CNS effects Mild CNS stimulation at low and intermediate doses Tachypnea, twitches, strabtail, tremors, generalised convulsions at higher doses Early liver degeneration and mild hepatitis observed only in animals which died before the end of the study
Abdel-Barry and Al- Hakiem	Leaf	Glycosidic extract	Mouse (Wistar) 10/group	Oral use (gavage) 0, 1000, 2000,	Mortality and clinical signs for up to 7 days post dose Body weight, food intake	LD ₅₀ =7000 mg/kg CNS effects Mild CNS stimulation at low and

Reference	Part	Formulation	Species	Route, dose	Parameters	Noteworthy findings
2000				4000, 6000, 8000, 10000 mg/kg (oral)	Histopathological examination of liver, kidney, stomach and large intestine	intermediate doses Tachypnea, twitches, strabtail, tremors, generalised convulsions at higher doses
Deshpande et al., 2016	Seed extract	Standardised fenugreek seed extract with 96.21% water-soluble low molecular weight galactomanna n containing oligosaccharid es	Sprague- Dawley rats	Oral use 2000 mg/kg	After 14 days: Death Weight loss Pathological changes (necropsy)	LD ₅₀ >2000 mg/kg

^a supplied by M/s Sterling Home Products (Chennai, India)

^b divided into 2 equal doses and dosed at 2-hourly intervals

3.3.2. Repeat dose toxicity

The available data are summarised in Table 10.

Table 10: Summary of repeat-dose toxicity studies

Reference	Part	Formulation	Species	Route, dose	Parameters	Noteworthy findings
Muralidhara et	-	Debittered	Rat (CFT	Oral use	Mortality and clinical signs	None
<i>al.,</i> 1999		powder	Wistar)	0 4 5 400/		
			aged 28	0, 1, 5, 10%	Body weight, food intake	

Reference	Part	Formulation	Species	Route, dose	Parameters	Noteworthy findings
			days	in diet 90-95 days	Haematological examination Biochemistry: serum ALP, AST, ALT, cholesterol, creatinine and urea Weight and microscopic examination	
					of adrenals, brain, heart, kidneys, liver, lungs, ovaries, spleen and testes	
Udayasekhara Rao P <i>et al.,</i> 1996	Seed	Powder	Rat (Wistar/N IN) 12/sex/gr oup	Oral use 0, 5, 10, 20% in diet 90 days	Mortality and clinical signs Body weight, food intake Haematological examination Biochemistry: serum ALP, AST, ALT, cholesterol, and fatty acid profile Weight and microscopic examination of liver, kidney, lung, spleen, gastrointestinal tract, pancreas, testis, ovary	Body weights, food intake Transient decrease in food intake during the first few days (≥ 5%) Biochemistry ↑ (dose-related) serum ALP (M, significant at 20% only) ↓ cholesterol level (M, 10 and 20%) Organ weights ↑ relative liver weight (F, +15% at 10% and +28% at 20% compared to controls) Histopathological examination Lungs: mild to moderate chronic interstitial pneumonitis: 17/24, 18/24, 16/24, 18/24 (at 0, 5, 10, 20%, higher

Reference	Part	Formulation	Species	Route, dose	Parameters	Noteworthy findings
						Lungs: severe chronic interstitial pneumonitis: 3/24, 0/24, 1/24, 0/24 (at 0, 5, 10, 20%)
Deshpande et	Seed	Standardised	Sprague-	Oral use	Mortality	No mortality
<i>al.,</i> 2016	extract	fenugreek seed extract	Dawley rats	250, 500 and	Ophthalmological control	No signs of toxicity in any parameter.
		with 96.21%		1000 mg/kg	Body weight	NOAEL: 1000 mg/Kg
		water-soluble low molecular		90-days repeated dose	Functional observations	
		weight		followed by a	Grip strength	
		galactomanna n containing		recovery period of	Motor activity	
		oligosaccharid es		28 days	Urinalysis, haematological and coagulation analysis, clinical	
					chemistry	
					Pathological examination after euthanasia	

^a supplied by M/s Sterling Home Products (Chennai, India)

Assessor's comment

Three 90-day rat studies were found in the literature. The experimental protocols of Muralidhara et al. (1999) and Udayasekhara Rao P et al. (1996) were similar. Muralidhara et al. (1999) administered the debitterised powder prepared from an unknown part of fenugreek, at up to 10% in the diet. Udayasekhara Rao P et al. (1996) administered a fenugreek seed powder at up to 20% in the diet. In the study by Deshpande et al. (2016), a standardised fenugreek seed extract with 96.21 % water-soluble low molecular weight galactomannan containing oligosaccharides was administrated in oral doses up to 1000 mg/kg.

No toxic effects were observed in the studies by Muralidhara et al. (1999) and Deshpande et al. (2016). Udayasekhara Rao P et al. (1996) reported increased liver weight in females receiving 10 and 20% of seed powder with increased alkaline phosphatase (ALP) levels. However, this did not correlate with any hepatic finding at histopathological examination. Chronic interstitial pneumonitis was observed at a similar incidence in all groups including controls (~70-85%) of which described to be due to murine respiratory mycoplasmosis, the main causative agent is Mycoplasma pulmonis. An inbred colony of rats was used in this study, and the results suggest that it was infected by Mycoplasma pulmonis. Therefore, some doubts remain regarding the sanitary conditions of the animals.

In the studies by Muralidhara et al. (1999) and Udayasekhara Rao P et al. (1996), the list of organs selected for histopathological examination was quite limited. Contrary to results obtained in rats and rabbits which are further detailed in the reproduction toxicity section, no testicular finding was reported. In addition, no decrease in blood glucose levels (or corroborating finding) was noted in both studies, although this was expected due to the reported hypoglycaemic effect of fenugreek seeds (see pharmacology).

3.3.3. Genotoxicity

The available data are summarised in Table 11.

Table 11: Summary of genotoxicity studies

Reference	Part	Formulation	Type of test	Test system	Concentration metabolising system	Results
Wu <i>et al.,</i> 1997	Trigonelline, heated for 20 min at 250°C then let cool down at room temperature		Gene mutation in bacteria	Salmonella typhimurium strains TA98, YG1024 and YG1029	Concentration range not detailed but 4 different concentrations were used to establish a dose-response curve +/- S9 (chlorophene- induced rat liver)	Potent mutagenic activity with and without detected in this model mimicking coffee roasting The authors report that pure trigonelline is not mutagenic when not heated (Wu <i>et al.</i> , 1997)
Flammang <i>et al.,</i> 2004	Seed	Extract (THL)*	Gene mutations in bacteria	Salmonella typhimurium strains TA1535, TA1537, TA98, TA100 Escherichia coli strain WP2uvrA	33.3 to 5000 µg/plate +/- S9 (aroclor-induced rat liver)	Negative
Flammang <i>et al.,</i> 2004	Seed	Extract (THL)*	Gene mutations in mammalian cells	L5178Y mouse lymphoma cells (TK locus)	+S9: 500 to 5000 μg/ml -S9: 150 to 4000 μg/ml	Negative The authors indicate that THL caused dose-related increase in cytotoxicity as measured by the reduction in relative total growth <u>Comment:</u> According to OECD guideline no.476**, RTG should range from 10 to 20% if the maximum concentration is based on cytotoxicity In this experiment, RTG reached 19.4% at 4000 µg/ml without S9, and 29.1% at 5000 µg/ml

Reference	Part	Formulation	Type of test	Test system	Concentration metabolising system	Results
						with S9 Therefore, the level of cytotoxicity is acceptable It is also noted that the maximal concentrations used are in line with the OECD guideline no.476 (5 mg/mL for relatively non-cytotoxic compounds)
Flammang <i>et al.,</i> 2004	Seed	Extract (THL)*	Chromosomal aberrations <i>in</i> <i>vivo</i>	Mouse, micronuclei in bone marrow	500, 1000, 2000 mg/kg per day for 3 days by oral use (gavage)	Negative
Deshpande et al., 2016	Seed extract	Standardised fenugreek seed extract with 96.21% water- soluble low molecular weight galactomannan containing oligosaccharide s		OECD Guidelines <i>Salmonella typhimurium</i> (TA97a, TA98, TA100, TA1535 and TA102)	Doses (5000.00, 1666.67, 555.55, 185.18 and 61.72 μg/plate) Rat liver activated (+/- S9)	No mutagenic effects were evidenced

* containing \geq 40% 4-hydroxyisoleucine, mode of extraction not detailed

** Organisation for Economic Co-operation and Development (OECD) guidelines for the testing of chemicals, Test n°476: *in vitro* mammalian cell gene mutation test, 1997

In addition, the WHO monograph on semen *Trigonellae Foenugraeci* reports that an aqueous and a chloroform/methanol extract of the seeds were not mutagenic in the *Salmonella* microsome assay using *S. typhimurium* strains TA98 and TA100 (Rockwell and Raw, 1979 and Mahmoud *et al.*, 1992 / *cited by WHO 2007*).

Assessor's comment:

Flammang et al. (2004) performed an ICH-compliant battery of 3 genotoxicity tests which yielded negative results. However, the tests were performed with undefined extracts of fenugreek seeds. Neither the mode of extraction, nor the full composition of the extracts (qualitative and quantitative) were described.

The data reported in the WHO monograph were obtained with irrelevant extracts and the number of strains used was not sufficient. The extract used in the study by Deshpande et al. (2016) does not correspond to the herbal substance or herbal preparations included in the monograph.

Overall, it is considered that conventional genotoxicity data obtained with a clinically relevant herbal preparation is lacking, thus, precluding the inclusion of Trigonella foenum-graecum L., semen in the list of herbal substances, preparations and combinations thereof for use in traditional herbal medicinal products.

3.3.4. Carcinogenicity

No conventional carcinogenicity study is available.

3.3.5. Reproductive and developmental toxicity

In-vivo studies have been published since the late fifties, reporting effects related to reproductive toxicity. New data on embryo-foetal and peri- and postnatal toxicity should also be considered regarding Section 5.3. in the monograph. The available data are summarised in Table 12.

The first studies regard to the uterine stimulation by seeds preparations [Goto *et al.* (1957), Abdo and Al-Kafawi (1969)], to the emmenagogue effects of seed extracts and of the whole plant [Casey (1960); Malhi and Trivedi (1972), Saha *et al.* (1961)] and to the abortion (Casey, 1960).

Latter several other studies were performed exploring the reproductive and developmental toxicity and their mechanisms. Kamal *et al.* (1993) treated male rats with the steroidal fraction of fenugreek seed extract for 2 months. The sperm count and motility of treated animals were decreased. In addition, the weight of reproductive tissues and androgen-dependent parameters (protein, sialic acid and fructose) were lower, thus, indicating reduced levels of circulating androgens. These findings were shown to have histological correlates (arrest of spermatogenesis, degeneration of seminiferous tubules and epididymis). Cholesterol levels were higher in treated vs. control animals in serum and testis so that the authors concluded that it may be co-related with its non-utilisation thus, leading to decreased circulating androgen and altered testicular histoarchitecture. The functional consequence was a loss of fertility for 20/20 treated males. They conclude that the test-article exerts both anti-fertility and antiandrogenic activities.

Kassem *et al.* (2006) showed that administration of fenugreek seed powder in feed (30%) for 3 months induced testicular toxicity in rabbits, as shown by marked decreases in testosterone levels, testes weight and sperm count. This correlated histologically with a decreased number of seminiferous tubules and disruption of spermatogenesis (mild hypoplasia). According to the authors, these results are coherent with those of Kamal *et al.* (1993). However, they indicate that fenugreek may induce testicular toxicity rather than anti-fertility effects based on the lack of difference in the litter size when treated males were mated with untreated females. In female rabbits treated the same way as their male counterparts, pre-breeding oestrogen and progesterone levels were decreased, whereas gestational progesterone levels were markedly increased. Histopathological examination reported increased ovulation (increased number of corpus luteum), and proliferative changes of endometrial glands. The development of foetuses obtained after mating of treated males and females is reported as abnormal, due to marked decreases in "foetal + placental" weight (-80% on gestation day 20 (GD20)) and litter size (-75%).

Sethi *et al.* (1990) administered fenugreek seed powder to rats during the first ten days of gestation at 175 mg/kg per day. The number of resorptions was increased. This is coherent with the results published by Elbetieha *et al.* (1996) and Adhikary (1990) with fenugreek seed extracts administered from the beginning up to the 6th or 10th day of pregnancy, respectively. In addition, some gross and visceral anomalies were reported in the study published by Sethi *et al.* (1990).

The only negative study was conducted by Mital and Gopaldas (1986) by administration of up to 20% fenugreek seed powder in the diet of rats for the whole gestation period.

More recent studies confirm the reproductive and developmental toxicity:

The administration of a lyophilised extract of fenugreek seeds (DER 5:1, solvent water) to pregnant mice during the gestational period (500 and 1000 mg/kg per day) produced developmental toxicity in the offspring: increase in the foetal death rate, decrease in the litter size, reduction in the foetal body weight, reduction of the brain weight. The dose of 1000 mg/kg per day induced significant delay in sensorimotor and coordination functions in the prenatally treated mice and altered locomotor coordination at advanced age. Based on these studies authors concluded that fenugreek seeds extract may have deleterious toxic effects on reproductive performance, potential teratogenic effects in foetuses, growth retardation and altered neurobehavioral performance in the post-weaning (Khalki *et al.*, 2010, 2012, 2013).

The effects of the sub-chronic (90 days) administration of fenugreek (153, 305 and 610 mg/kg per day) on the reproductive, cytological and biochemical toxicity were assessed in mice. The highest dose caused significant changes in the percent motility, sperm count, spermatozoa morphology, chromosomal aberrations, rate of pregnancy and pre-implantation loss. Male fertility was decreased in higher treated doses (Al-Yahya, 2013).

Ouzir *et al.* (2016) abridged the toxicological properties of fenugreek reported in literature (including data on seeds' preparations, isolated compounds and combinations) and advised that reproductive, teratogenic, neurophysiological, behavioural and other effects of fenugreek seeds are to take seriously into account. As relevant for the assessment of the safety of fenugreek herbal preparations use as traditional medicinal products the following conclusions should be taken in account:

 Fenugreek is a teratogen capable of producing a variety of birth defects; testicular toxicity and anti-fertility effects in laboratory *in vivo* models (males) are related to components that induce oxidative stress and DNA damage; anti-fertility effects on females, especially during late pregnancy, are related to saponins stimulating uterine contractility and restricting the development of embryo. It was suggested that anti-fertility effects can be due to a long-term use of at least 100 mg/kg body weight of animal.

Table 12:	Summary	of Reproduction	toxicity studies
-----------	---------	-----------------	------------------

Reference	Part	Formulation	Species	Duration, route, dose	Parameters	Noteworthy findings
Kamal <i>et al.,</i> 1993	Seed	Steroidal fraction of extract obtained via extraction with toluene and n- hexane	Rat (Holtzman) 20M/group	60 days Oral use 0, 100 mg per day, per rat, i.e. approximately 450 mg/kg per day	Body weight fertility test (mating with untreated females on day 61 and check for implantation sites 7 days thereafter). Biochemistry (serum and reproductive tissues) Sperm parameters (count, motility). Organ weight: liver, heart, kidney, adrenal, reproductive tissues. Histopathology: testis, epididymides, vas deferens, seminal vesicles.	Organ weight: ↓ weight of epididymis, ventral prostate, seminal vesicles. Sperm parameters: ↓ motility ↓ density in cauda epididymis and testis. Fertility: 100% negative results in treated animals in spite of successful mating (confirmed by vaginal plug); Tissue biochemistry testis: ↓ protein, ↑ cholesterol, ↓glycogen, ↓fructose; Seminal vesicle: ↓ protein, ↓ sialic acid, ↓fructose; Epididymides: ↓ protein, ↓ sialic acid Ventral prostate: ↓ protein, ↓ sialic acid. Serum biochemistry: ↑ cholesterol, ↓ protein, ↓ phospholipids, ↓ triglycerides; Histopathology testis: arrest of spermatogenesis, degenerating seminiferous tubules; Cauda epididymis: severe degenerative changes; Vas deferens: ↓ lumen diameter, ↑ thickness of lamina propria.
Kassem <i>et al.,</i> 2006	Seed	Seed	Rabbit (NZW) 4M+12F/group	3 months; sacrifice on GD10, GD20, or	Body weight hormonal assessment: determination of plasma progesterone, oestrogen and	Parental animals hormone assessment: \downarrow testosterone (-66%), \downarrow oestrogen (- 18%), \downarrow progesterone (pre-breeding - 14%), \uparrow progesterone (GD10 and

Reference	Part	Formulation	Species	Duration, route, dose	Parameters	Noteworthy findings
				after parturition Oral use 0, 30% in diet	testosterone. Mating parameters: implantations, corpora lutea, resorptions Foetal weight, litter size, newborn weight. Sperm count Histopathology: ovaries, uterus, teste.	GD20, +78% and +111%); Sperm parameters \downarrow sperm count (-47%). Organ weight: \downarrow testicular weight (- 25%); Histopathology testis: \downarrow number of seminiferous tubules; Testis: mild spermatogenesis, hypoplasia; Ovary: higher development of the secondary and tertiary follicles in the cortex area, Ovary: \uparrow number of corpus luteum, \rightarrow \uparrow ovulation activity; Uterus: proliferative changes of some endometrial glands; Uterus: \uparrow proliferation of the endometrial glands with hyperplastic changes. Embryo-foetal development: \downarrow foetal, + placenta weight on GD20 (-80%). Newborns: \downarrow litter size (-75%), \uparrow newborn weight (+26%).
Elbetieha <i>et</i> <i>al.,</i> 1996	Seed	Aqueous extract	Rat (SD) 9F/group	GD1-GD6 (C- section on GD20) Oral use (gavage) 0, 800 mg/kg per day	Number of implantations. Number of resorptions. Number of live foetuses.	 ↑ number of total resorptions. ↑ number of dams with resorptions.
Adhikary 1990	-	Petroleum extract	Rat	GD1-GD10	Screening for anti-fertility	60-66% anti-fertility activity.

Reference	Part	Formulation	Species	Duration, route, dose	Parameters	Noteworthy findings
Sethi 1990	Seed	(60-80%) Powder	Rat (Charles Foster) 5F/group	Oral use 500-1250 mg/kg per day GD1-GD10 (caesarean section on GD20) Oral use 0, 175 mg/kg per day	activity. Dams: Number of implantations; Number of resorptions. Foetuses: Number of live births; Number of still births; Malformations (gross, skeletal and visceral).	↑ number of resorptions; Treated: 54 corpora lutea, 54 implantations, 44 live births, 0 still births, 10 resorptions ⇒ 10/54 = 18% abortifacient activity; Controls: 47 corpora lutea, 47 implantations, 46 live births, 0 still births, 1 resorptions ⇒ $1/47 = 2\%$ abortifacient activity; ↓ foetal body weight and foetal crown-rump length (- 41% and -22% compared to controls) Various gross anomalies including notably inverted/averted claw (18% and 21% vs. 0% and 0% in controls), shoulder joint defect (18% vs. 0%),
Mital and	Seed	Powder	Rat (Charles	GD1-GD21	Dams:	tail kinking (18% vs. 0%) and clubbing of hind limb (9% vs. 0%); Visceral anomalies: neuralpore (18% vs. 0%), enlarged neural canal (6% vs. 0%); Skeletal effects: non-ossified skull bones (18% vs. 0%). None
Gopaldas 1986			Foster) 5-8F/group	(caesarean section on GD22) Oral use	Body weights; Food consumption; Number of implantations;	

Reference	Part	Formulation	Species	Duration, route, dose	Parameters	Noteworthy findings
				0, 5, 20% in diet	Number of resorptions; Placenta weight. Foetuses: Body weight.	
Al-Yahya, 2013	Seed	Capsules containing 1.22 g of fenugreek seed	Mice	90 days Oral use 153, 305 and 610 mg/kg per day	Reproductive, cytological and biochemical parameters.	High doses caused significant changes in the motility, sperm count, spermatozoa morphology, chromosomal aberrations, rate of pregnancy and pre-implantation loss. Decreased male fertility.
Khalki <i>et al.,</i> 2010	Seed	Lyophilised aqueous extract (DER 5:1)	Pregnant mice	Gestational period Oral use 500 and 1000 mg/kg per day	Foetal parameters: Litter size, foetal viability, body weight and weight gain; malformations and abnormal morphological changes.	Developmental toxicity: increased foetal death rate, decreased litter size, decreased foetal body weight. Delay in sensorimotor and coordination functions in prenatally treated mice and altered locomotor coordination at advanced age.
Khalki <i>et al.,</i> 2012	Seed	Lyophilised aqueous extract (DER 5:1)	Pregnant mice	Gestational period Oral use 500 and 1000 mg/kg per day	Behaviour of progeny was evaluated three weeks after birth using the open field, the rotarod test and the continuous alternation task by the T-maze. At 28 postnatal day age, brain was removed and cut	Decreased foetal body weight, reduction of brain weight. Delay in sensorimotor and coordination functions. Significant reduction in successful spontaneous alternations.

Reference	Part	Formulation	Species	Duration, route, dose	Parameters	Noteworthy findings
					for histological evaluation.	
Khalki <i>et al.,</i> 2013	Seed	Lyophilised aqueous extract (DER 5:1)	Pregnant mice	Gestational period Oral use 1000 mg/kg per day	Evaluation of the effects of prenatal treatment of fenugreek seeds on the development of sensorimotor functions from birth to young adults: righting reflex and cliff avoidance during the first postnatal week. Geotaxis response at P10 and P12. Long-term effects (5 weeks of age): Motor ability and coordination were evaluated using a Rotarod apparatus.	Maternal exposure to fenugreek altered the excitability of the spinal locomotor network early during development. These alterations are likely associated with significant changes in motor performance and gait in adults.

Assessor's comment:

Studies published by Kamal et al. (1993) and Kassem et al. (2006) were designed to evaluate the effect of fenugreek seeds preparation on fertility. Both studies report testicular toxicity shown by decreased testosterone levels, altered sperm parameters, decreased testis weight, lowered/arrest of spermatogenesis, degeneration seminiferous tubules. This toxicity is attributed to the treatment-related decrease in testosterone, which seems consistent. A no-observed-adverse-effect-level (NOAEL) was not determined. A potential impact on fertility cannot be excluded.

In female rabbits, changes in oestrogen and progesterone levels were reported by Kassem et al. (2006).

Three studies showed that fenugreek seeds preparations (extract or powder) could increase the number of resorptions when given to rats from the first day up to the 10th day of gestation. In two studies, the number of implantations was not reported to be affected, in the third one, the authors did not indicate whether this parameter has been monitored. In the study performed by Kassem et al. (2006) in rabbits, the number of implantations was also not affected by administration of seed powder, but the litter size was decreased by 75% compared to controls. In the study performed by Kamal et al. (1993), successful mating occurred but there is no data provided regarding the number of implantations. Therefore, it seems reasonable to conclude that fenugreek seed induces embryolethality in rats. This conclusion is also supported by the reported historical/theoretical use of fenugreek as an abortifacient and labour inducer (Ulbricht et al., 2007) and ex vivo data on guinea-pig uterus (Abdo and Al-Kafawi, 1969). Other supportive data were summarised by Farnsworth et al. (1975) who performed an extensive review of published articles dealing with the effects of various plants on fertility and the underlying mechanism. Thus, fenugreek was classified among plants having abortifacient and emmenagogue (which induces or hastens menstrual flow) applications.

Regarding the impact of fenugreek seed on embryo-foetal development, contradictory results were obtained in rats. Sethi et al. (1990) reported gross and visceral malformations in rats at non-maternotoxic doses, whereas Mital and Gopaldas (1986) did not observe any effect on reproduction in the same species. The design of both studies is not in line with current recommendations for evaluation of embryo-foetal toxicity. Indeed, the number of animals and dose levels were insufficient, and the duration of treatment was not optimal – the test-article should have been administered for the whole period of organogenesis, i.e. from GD 6-7 to GD 15-18.

Additional data have shown that fenugreek seeds extracts cause increased foetal death rate, decreased litter size, decreased foetal body weight, reduction of brain weight and altered neurobehavioral performance in the post-weaning (Khalki 2010, 2012 and 2013), together with a decrease in the rate of pregnancy, an increase in implantation loss, and a decrease in male fertility through significant changes in the percent motility, sperm count, spermatozoa morphology and chromosomal aberrations (Al-Yahya, 2013). However, there are no reproductive and development toxicity studies performed in accordance with current guidelines and further studies are needed. In conclusion, studies in animals have shown reproductive and development toxicity including male and female fertility. The use during pregnancy and lactation is not recommended. Furthermore, the use is not recommended when pregnancy is planned since male and female fertility may be affected by the treatment (see also section 5.5.5).

3.3.6. Local tolerance

No data available.

3.3.7. Other special studies

Some studies focused on the impact of fenugreek seeds on thyroid function because thyroid hormones are involved in carbohydrate metabolism. The data are summarised in Table 13.

Refere nce	Part	Formulation	Species	Duration, route, dose	Parameters	Noteworthy findings
Tahiliani and Kar, 2003	Seed	Hydro- ethanolic extract (20%)	Rat	15 days Oral use (gavage) 0, 220 mg/kg per day	Serum levels of: T3, T4, glucose, cholesterol, AST, ALT	↓ T3 levels (-40%) No other effect (notably on glucose and T4 levels)
Panda <i>et al.,</i> 1999	Seed	Hydro- ethanolic extract (20%)	Mouse (7M/gro up)	15 days Oral use (gavage) 0, 110 mg/kg per day	Body weight Serum T3 and T4 levels Hepatic biochemistry: protein, hepatic lipid peroxidation, superoxide dismutase (SOD)and catalase (CAT) activities	 ↑ body weight Thyroid hormones: ↓ T3, ↑ T4, ↓ T3/T4 ratio ↓ SOD activity
			Rat (7M/gro up)	15 days Oral use (gavage) 0, 110 mg/kg per day	Body weight Serum T3 and T4 levels Hepatic biochemistry: protein, hepatic lipid peroxidation, superoxide dismutase (SOD)and catalase (CAT) activities	 ↑ body weight (statistical significance not reached) Thyroid hormones: ↓ T3, ↑ T4, ↓ T3/T4 ratio ↓ SOD activity

Table 13: Studies on effects on thyroid

Assessor's comment:

Results from 3 experiments in rodents showed that a hydro-ethanolic extract of fenugreek seeds induced a decrease in triiodothyronine (T3) levels. In 2 experiments, there were concomitant increase in thyroxine (T4) levels and decrease in T3/T4 ratio. These results suggest decreased conversion of T4 to T3. Unfortunately, thyroid stimulating hormone (TSH) levels were not monitored. The decrease in T3/T4 ratio reveals decreased 5'-deiodinase activity since the majority of circulating serum T3 is produced by peripheral conversion of T4 to T3. A NOAEL was not determined. The results of these

studies cannot substantiate the impact of fenugreek preparations in thyroid function due to the lack of complete experimental data.

3.3.8. Conclusions

Two 90-day repeat-dose toxicity studies in rats did not identify any target organ but some doubts remain regarding the sanitary conditions of the animals in one study due to the occurrence of murine respiratory mycoplasmosis. In addition, the lack of effects on testes is rather surprising in view of the testicular toxicity consistently reported in reproduction toxicity studies.

Treatment-related testicular toxicity due to decrease in testosterone levels as well as interference with thyroid hormone levels were reported in animals. In addition, female hormone levels were affected in one study in rabbits. In view of the paramount importance of gonads and thyroid during development, these points should be considered for administration in patients under the age of 18 years.

An ICH-compliant battery of tests did not report any genotoxic effect for a proprietary extract of fenugreek seeds. However, the characteristics of this extract have not been published so that these results cannot be considered. Overall, it is considered that relevant information on genotoxicity is lacking. In addition, conventional carcinogenicity studies are lacking.

Testicular toxicity was reported in rats treated for 2 or 3 months with either seed powder or the steroidal fraction of seeds. It was characterised by altered sperm parameters, decreased testis weight, lowered/arrest of spermatogenesis and degenerating seminiferous tubules. These effects are attributed to the treatment-related decrease in testosterone. Therefore, a potential impact on fertility cannot be excluded.

Three studies showed that fenugreek seeds preparations (extract or powder) could increase the number of resorptions when given to rats from the first day up to the 10th day of gestation. From the available data, it seems reasonable to conclude that fenugreek seed induces embryolethality in rats. This conclusion is coherent with the reported historical/theoretical use of fenugreek as an abortifacient and for labour induction.

Additional data have shown that fenugreek seeds extracts may have toxic effects on reproductive performance, potential teratogenic effects in foetuses, growth retardation and altered neurobehavioral performance in the post-weaning (Khalki, 2010, 2012 and 2013), together with a decrease in the rate of pregnancy, an increase in implantation loss, and a decrease in male fertility through significant changes in the percent motility, sperm count, spermatozoa morphology and chromosomal aberrations (Al-Yahya, 2013).

Overall, there are no reproductive and development toxicity studies performed in accordance with current guidelines and further studies are needed. However, studies in animals have shown reproductive toxicity including male and female toxicity which mechanism of action remains unknown. Reports on teratogenicity and anti-fertility effects make it necessary to not recommend the use of fenugreek seed when pregnancy is planned or during pregnancy and lactation and in women of childbearing potential not using contraception. In accordance with the EMA 'Guideline on risk assessment of medicinal products on human reproduction and lactation: from data to labelling' the following information will be added to section 4.6 of the monograph:

"There are no or limited data from use during pregnancy and lactation. Studies in animals have shown reproductive toxicity including male and female fertility (see section 5.3 'Preclinical safety data'). The use during pregnancy and lactation and in women of childbearing potential not using contraception is not recommended."

Information on effects on male and female fertility and embryo-foetal effects and associated risks should be reported in the monograph in section 5.3.

The wording proposed for section 5.3 in the monograph is:

"Adequate studies on reproductive toxicity have not been performed. However, testicular toxicity and decreased fertility have been reported in studies with high doses of fenugreek seed in mice, rats, and rabbits. In studies in rats and mice with high doses of fenugreek seed, embryo resorption, foetal death, growth retardation, malformations, and altered neurobehavioral performance have been reported.

Tests on genotoxicity and carcinogenicity have not been performed."

3.4. Overall conclusions on non-clinical data

Results from relevant experimental studies on *Trigonella foenum-graecum* L., semen to support the proposed indications are very limited. However, the reported pharmacological effects are not contradictory to the traditional uses.

Specific data on pharmacokinetics and interactions are not available.

Considering potential hypoglycaemic effects, warnings regarding the use of the herbal substance or preparations of fenugreek by patients treated for diabetes mellitus should be included in the monograph.

Considering the information on reproductive and developmental toxicity and the reports on teratogenicity and other anti-fertility effects, the use of fenugreek when pregnancy is planned or during pregnancy and lactation and in women of childbearing potential not using contraception is not recommended.

Tests on genotoxicity and carcinogenicity have not been performed with preparations of fenugreek covered by the monograph.

4. Clinical Data

4.1. Clinical pharmacology

4.1.1. Overview of pharmacodynamic data regarding the herbal substance(s)/preparation(s) including data on relevant constituents

Clinical pharmacology on fenugreek is not documented in humans.

4.1.2. Overview of pharmacokinetic data regarding the herbal substance(s)/preparation(s) including data on relevant constituents

Pharmacokinetic data are not available for all components of fenugreek or for the compound as a whole. In humans, it has been shown that saponins present in fenugreek are believed to be primarily absorbed in the terminal ileum as a potential mechanism assessed for its hypocholestaerolemic activity (Kandhare *et al.*, 2015).

4.2. Clinical efficacy

4.2.1. Dose response studies

No dose-response studies conducted with fenugreek have been found.

4.2.2. Clinical studies (case studies and clinical trials)

Appetite stimulant effect

The French approved: "traditionally used to gain weight in adults" is granted for more than 30 years in France. The traditional use of fenugreek is based on the experience and historical use of this herbal product in the European Union.

When searching reference to substantiate the efficacy/safety of fenugreek in the literature in this indication only one reference has been found: Rguibi and Belahsen (2006). This reference reports a survey of Moroccan Saharawi women as regards their fattening practices for gaining weight as a socio-cultural willingness of increasing their physical attractiveness.

Use of fenugreek is reported as an appetite enhancer in this survey.

All participants were interviewed face-to-face by an interviewer who belonged to this Saharawi ethnic group. A discussion guide was developed including questions on socio-demographic characteristics, satisfaction with their body size, dietary history and practical behaviours used to lose or to gain weight.

To determine the perceptions of body weight, participants were invited to answer the following questions: Have you wanted to gain weight in the past? Do you want to gain weight now? Do you want to lose weight now? Participants were asked to describe any actions that they have taken to lose or gain weight. All fattening practices used by the women were recorded, as well as other details such as portion size, frequency of eating, food composition and food preparation techniques.

This survey is conducted between October 2001 and April 2002 on a sample of 249 urban nonpregnant women aged 15 to 70 years old, without any previous systemic disease.

Demographic characteristics:

- Women belonging to the Saharawi ethnic group: communication skills in Hassaniya dialects, traditional clothing, history of their family's residence. Informed consent obtained verbally before they took part to the survey.
- Body mass index (BMI) was calculated as weight (kg) and height (m²). The WHO definitions were used for underweight (BMI < 18.5 kg/m²), normal weight (18.5 ≤ BMI < 25 kg/m²), overweight (25 ≤ BMI < 30 kg/m²) and obesity (BMI ≥ 30 kg/m²).
- Socio-demographic characteristics were recorded: marital status, educational level.
- Investigations regarding their perceptions of body weight have been recorded as well as their potential actions that they have taken to lose or gain weight.

Clinical Results

A summary of socio-demographic characteristics of the study sample is included in Table 14.

Variable	Value	
	Mean (SD)	Range
Age (years)	36.8 (11.8)	15.0-70.0
BMI (kg/m²)	29.6 (5.3)	17.3-41.4
	Number	Percentage
Marital status		
Single	50	20.1
Married	166	66.7
Divorced	19	7.6
Widow	14	5.6
Education		
Never attended school	155	62.2
Primary school	47	18.9
Secondary school	47	18.9

Table 14: Socio-demographic characteristics of the study sample (n=249 women)

The mean BMI was 29.6 kg/m2 and 30% of women were overweight and 49% were obese. A large majority of women (79.9%) described their weight as appropriate and only 50 described it as inappropriate (8 desired to lose weight and 42 desired to gain it). The desire to gain weight was in most cases accompanied by practising certain behaviours, for example using drugs, overfeeding and restriction of physical activity. The fattening practices changed between the past and currently as shown in the following table.

A summary of fattening practices used by Saharawi women desiring to gain weight is included in Table 15.

Practice	In the past (n=175)	Currently (n=42)
Appetite stimulant	71 (40.6)	3 (7.1)
Overeating	56 (32.0)	30 (71.4)
Corticosteroids (drugs intentionally used for their promotion of weight gain as a side effect)	41 (23.4)	4 (9.5)
Other	7 (4.0)	5 (11.9)

Table 15: Fattening practices used by Saharawi women desiring to gain weight

In addition to the therapeutic medication, the women reported that some seeds such as fenugreek (halba) consumed directly or added to dishes have been used to stimulate hunger.

Assessor's comment:

This study is the main "clinical support" of the use of fenugreek as an appetite stimulant besides the animal data. It is an observational survey where fenugreek is "mentioned" as being used by women desiring to gain weight. However, the study description does not enable to quantify the use of fenugreek among the appetite enhancers and ultimately to appreciate the potential contribution of fenugreek in the weight gain.

Therefore, per nature, this observational study is of no relevance to substantiate the efficacy and safety of fenugreek as an appetite enhancer.

Hypoglycaemic and antihyperlipidemic properties

To complete the data above, there is some information in the WHO monographs on selected medicinal plants which are also substantiated to some extent by the literature data, in particular hypoglycaemic/hypolipidemic effects which are described hereafter.

For the assessment on clinical efficacy of fenugreek seed preparations in hyperlipidemic treatment, the EMA document 'Guideline on clinical investigation of medicinal products in the treatment of lipid disorders' (EMA/CHMP/748108/2013) is considered appropriate to use.

For the assessment on clinical efficacy of fenugreek seed preparations in hypoglycaemic treatment, the EMA document 'Guideline on clinical investigation of medicinal products in the treatment or prevention of diabetes mellitus' (CPMP/EWP/1080/00) is considered appropriate to use.

Several clinical studies were performed in order to evaluate the safety and efficacy of fenugreek in the reduction of hyperlipidaemia and hyperglycaemia. The quality of these studies, however, did not always correspond to the current scientific and regulatory requirements. Therefore, their results, as well as those of some older studies, are only briefly discussed in this AR.

In the study by Rafraf *et al.* (2014), the influence of powdered fenugreek seeds on glucose metabolism and adiponectin levels in type 2 diabetic patients (n=88, men and women) was assessed through a triple-blind randomised controlled trial. Test group (n=44) received powdered whole fenugreek seeds (10 g per day) while placebo group (n=44) received 5 g per day of wheat starch for 8 weeks. The authors report that fenugreek seeds improved glucose metabolism, serum lipid profile and adiponectin levels.

Robert *et al.* (2016) conducted a randomised, controlled crossover trial to assess the effects of foodstuff products containing 10% fenugreek seed powder on postprandial blood glucose. Ten healthy individuals aged between 21 and 48 years (5 men and 5 women) without histories of cardiac disease, diabetes mellitus, thyroid problems, wheat allergy, smokers, alcohol or drugs, received 50 g glucose and buns and flatbreads prepared with (10%) or without fenugreek seed powder. The authors concluded that glycaemic response and the glycaemic index value after consuming food added with fenugreek were reduced in healthy individuals.

Also, a 3-years randomised, controlled, parallel study for the evaluation of the efficacy of a "debitterised, defatted and deodorised fenugreek fibre with vitamins, minerals and amino acids" on the reduction of the incidence rate of type 2 diabetes on pre-diabetic individuals was published (Gaddam *et al.*, 2015). One hundred forty men and women aged 30–70 years with criteria of prediabetes (test, n=66; control, n=74) were monitored at baseline and every 3 months for 3 years. Test group received fenugreek powder, 5 g twice daily before meals. The authors report that fasting plasma glucose, postprandial plasma glucose and LDL cholesterol were reduced statistically significant whereas serum insulin increased. Cumulative incidence rate of diabetes was reduced.

The study by Yousefi (2017) showed the results of a randomised, double-blind, placebo-controlled clinical trial on the effects of fenugreek seeds supplementation on serum biochemical parameters of patients with borderline hyperlipidaemia. Patients (n=56) received 8 g fenugreek seeds powder or placebo daily for 8 weeks. The authors reported that triglycerides, total cholesterol, low-density lipoproteins and fasting blood glucose decreased statistically significant versus baseline, although the differences between the treated group and the control group before and after the study in HDL, LDL/HDL, TC/HDL and BMI were not significant.

Three reviews on the clinical studies with fenugreek, mainly focused on its effect on glycaemic and lipidic levels have been published. In the review by Demmers *et al.*, 2017, a systematic review assessing scientific data on the efficacy and safety of medicinal food plants for the treatment of impaired glucose tolerance was done. Controlled trials (RCTs) with a minimum follow-up period of 6 weeks were included. Only one study on fenugreek was included in the review (i.e. Gaddam *et al.*, 2015). The authors of the review state that the risk of bias in the study was high and should be interpreted with caution.

Gong *et al.*, 2016 published a meta-analysis covering randomised clinical trials in relation to the efficacy and safety of fenugreek on prediabetes or diabetes mellitus. A total of 10 articles (12 studies) were included in the analysis i.e. Bordia *et al.*, 1997; Gaddam *et al.*, 2015; Ghattas *et al.*, 2008; Guo *et al.*, 2012; Gupta *et al.*, 2001; Moosa *et al.*, 2006; Rafraf *et al.*, 2014; Shen *et al.*, 2013; Suchitra and Parthasarathy, 2015; Xiao, 2008 (dissertation, not published in journal). Based on Jadad scores, three studies that scored four or more were deemed as high-quality i.e. Gaddam *et al.*, 2015, Rafraf *et al.*, 2014 and Xiao, 2008. These studies reported the random method, allocation concealment, blindness or dropouts. The other seven studies were of low quality. The average score 2.7 indicated the risk of bias. However, in the study by Bordia A, the patients with severe type 2 diabetes mellitus (T2DM) also took nitrates, in Gupta A's study, the patients took a combination of sulfonylurea and biguanides as well as fenugreek, Rafraf M's study made use of metformin and glibenclamide, Xiao J combined fenugreek with metformin or sulfonylurea. The confounding effect of these co-medications is not known and therefore, the meta-analysis by Gong *et al.* is considered not relevant for the monograph on fenugreek seed.

Also Neelakantan *et al.* (2014) published a meta-analysis covering trials of at least 1 week duration comparing the intake of fenugreek seeds with a control intervention, measuring changes in fasting blood glucose, 2 hours post-load glucose and HbA1c. Nine articles reporting 10 studies were included and pooled using random-effects models i.e. Bordia *et al.*, 1997, Chevassus *et al.*, 2010, Gupta *et al.*, 2001, Lu *et al.*, 2008, Alamdari *et al.*, 2009, Chevassus *et al.*, 2009, Raghuram *et al.*, 1994, and two articles by Sharma *et al.*, 1990. The authors report that only the studies by Chevassus *et al.*, 2010, Gupta *et al.*, 2010, Gupta *et al.*, 2001, Lu *et al.*, 2001, Lu *et al.*, 2008, and Chevassus *et al.*, 2009, were double-blind and randomised. The authors report substantial heterogeneity in study results. Differences in the diabetes status of the participants (most trials included participants with type 2 diabetes mellitus treated with diet or oral anti-diabetic medication) and a large variation in dose of fenugreek preparation and type of preparation appeared to be contributors to variation in study results. Therefore, the meta-analysis by Neelakantan *et al.* is considered not relevant for the monograph on fenugreek seed.

Other studies are also available: Sharma *et al.* (1996b), Prasanna (2000), Raghuram *et al.* (1994), Abdel-Barry *et al.* (2000), Memon *et al.* (2010), Bawadi *et al.* (2009), Losso *et al.* (2009), Madar *et al.* (1988), Mathern *et al.* (2009).

Assessor's comment:

Data are insufficient or not relevant to propose an indication related to hypoglycaemic/hypolipidemic effects. There is no information available that fenugreek has been in medicinal use within the EU for at least ten years for the treatment of diabetes or other metabolic disorders. The reported clinical studies

are of limited value due to several quality issues, mainly the short duration and the sample size. Thus, none of the new clinical studies introduce the possibility for the establishment of a well-establish use monograph.

However, the possible interference with glycaemia should be considered in the monograph, under section 4.4. - Special warnings and precautions for use – with the following wording: "Due to a possible hypoglycaemic effect of fenugreek, close monitoring of glycaemic control should be considered in patients treated for diabetes mellitus."

A summary of clinical studies on humans, in eating behaviour, lipidic and glycaemic levels is included in Table 16.

Study, reference	Study design, controls, duration	Test products (preparation, pharm. form, dose, route of admin., duration)	Number of subjects (including age, sex, drop out)	Healthy subjects or diagnosis of patients	Outcomes (primary and secondary endpoints)	Statistical analysis, quality score	Clinical relevance
Weight gain Rguibi and Belahsen, 2006	Observational study	Fenugreek seeds "mentioned" as used by women desiring to gain weight	249 urban non- pregnant women Aged 15 to 70 years old willing to gain weight	Healthy subjects: Mean BMI 29.6 kg/m ² ; 30% overweight and 49% obese Without any previous systemic disease	Weight gain	No	Fenugreek consumption not quantified among the appetite enhancers and impossible to appreciate the potential contribution of fenugreek in the weight gain. Observational survey no relevant to substantiate the efficacy and safety of fenugreek as an appetite enhancer.
Effects of repeated administration of a fenugreek seed extract on the eating behaviour of overweight subjects	6-week double- blind randomised placebo- controlled parallel trial Main endpoints: energy intake, weight, fasting	Dry hydro-alcoholic fenugreek seed extract Three times daily as oral coated tablets with a total daily dose of 1176 mg (approximately 14 mg/kg)	40 subjects in two groups of 20 39 male, aged 18-59 years (mean 38 years) completed this study	Healthy overweight male volunteers	The main end point i.e. reduced total energy intake was not statistically significant vs placebo. Ratio of fasting serum	For the energy intake, 95% CI -2.91 to 0.26, n=12, p=0.094)	The main end point i.e. reduced total energy intake was not statistically significant vs placebo in human volunteers in this small, short-term study. No effect on fasting

Table 16: Clinical studies on humans, in eating behaviour, lipidic and glycaemic levels

Study, reference	Study design, controls, duration	Test products (preparation, pharm. form, dose, route of admin., duration)	Number of subjects (including age, sex, drop out)	Healthy subjects or diagnosis of patients	Outcomes (primary and secondary endpoints)	Statistical analysis, quality score	Clinical relevance
Chevassus <i>et</i> <i>al.,</i> 2009	glucose level, insulin and lipid profile, visual analogue scale scores of appetite/satiety and blood glucose and insulin levels				insulin/plasma glucose decreased statistically significant vs. placebo, but no effect on fasting plasma glucose, fasting serum insulin, or plasma lipid profile markers		plasma glucose, fasting serum insulin, or plasma lipid profile.
Use of fenugreek seed powder in the management of non-insulin dependent diabetes mellitus Sharma <i>et al.</i> , 1996b	24 weeks Control group (10 patients)	Diet plus 25 g fenugreek seed powder Divided into two doses at lunch and dinner	60 patients 45 male, 15 female Ages 30 - 70 years 21 obese and 39 non-obese	Mild (n=22), moderate (n=35) and severe (n=7) NIDDM All patients with uncontrolled blood glucose levels, not taking adequate medicine	46.7% of patients showed full glycaemic control 33.3% showed moderate glycaemic control 20% exhibited minimal glycaemic control Glycosylated haemoglobin showed a	Not available	The main points of this study are the long-term use and data on glycosylated haemoglobin. Critical limitations are the sample size, heterogeneous population, validity of the control group, lack of reliability on the role of fenugreek in the slight reduction in glycosylated

Study, reference	Study design, controls, duration	Test products (preparation, pharm. form, dose, route of admin., duration)	Number of subjects (including age, sex, drop out)	Healthy subjects or diagnosis of patients	Outcomes (primary and secondary endpoints)	Statistical analysis, quality score	Clinical relevance
					significant reduction (12.5% percentage decrease) compared to initial values		haemoglobin. Patients badly controlled for their diabetes before the study entry, having standard treatments after inclusion.
Influence of powdered fenugreek seeds on glucose metabolism and adiponectin levels in Type 2 Diabetic Patients Rafraf <i>et al.</i> , 2014	Triple-blind randomised controlled trial Duration: 8 weeks	Test group (n=44) received powdered whole fenugreek seeds (10 g per day) Placebo (n=44) received 5 g per day of wheat starch	n=88, men and women	Type 2 diabetic patients	Fenugreek seeds improved glucose metabolism, serum lipid profile and adiponectin levels	Significant decrease in fasting blood glucose (p=0.007) and HbA1c (p=0.0001), serum levels of insulin (p=0.03), total cholesterol (p=0.005) and triglycerides (p=0.00001) and increased serum adiponectin (p=0.001)	Study limitations are the sample size.

Study, reference	Study design, controls, duration	Test products (preparation, pharm. form, dose, route of admin., duration)	Number of subjects (including age, sex, drop out)	Healthy subjects or diagnosis of patients	Outcomes (primary and secondary endpoints)	Statistical analysis, quality score	Clinical relevance
						versus placebo	
Effects of foodstuff products containing 10% fenugreek seed powder on postprandial blood glucose Robert <i>et al.,</i> 2016	Randomised, controlled crossover trial	50 g glucose and buns and flatbreads prepared with (10%) or without fenugreek seed powder	10 individuals Age 21 - 48 years 5 men, 5 woman	Healthy subjects without histories of cardiac disease, diabetes mellitus, thyroid problems, wheat allergy, smokers, alcohol or drugs.	The glycaemic response and the glycaemic index value after consuming food added with fenugreek were reduced.	Values were subjected to repeated measures ANOVA, and significant differences were obtained by Bonferroni multiple comparisons. p<0.05 was significant.	Fenugreek seed powder was added to buns and flatbreads as part of the daily food. Only 10 healthy individuals were included.
Effects of fenugreek seeds supplementatio n on serum biochemical parameters of patients with borderline hyperlipidaemia	Randomised, double-blind, placebo- controlled clinical trial	8 g fenugreek seeds powder or placebo, daily 8 weeks	Patients (n=56)	Borderline hyperlipidaem ia	Triglycerides (TG), total cholesterol (TC), low-density lipoprotein (LDL), and fasting blood glucose (FBG) significantly decreased compared with the baseline.	Kolmogorov- Smirnov test for determining quantitative data distribution. Paired samples t-test to identify differences	Differences between two groups (fenugreek group and placebo group) before and after the study in HDL, LDL/HDL, TC/HDL and BMI were not significant. Low number of patients.

Study, reference	Study design, controls, duration	Test products (preparation, pharm. form, dose, route of admin., duration)	Number of subjects (including age, sex, drop out)	Healthy subjects or diagnosis of patients	Outcomes (primary and secondary endpoints)	Statistical analysis, quality score	Clinical relevance
Yousefi, 2017						between conditions before and after measurements Two independent samples t-test for analysis of differences between the groups. p- values <0.05.	

Clinical studies on humans, in menopause and sexual health.

Several studies have been conducted with some fenugreek preparations in order to evaluate their efficacy in patients with oestrogens or androgens deficiency (Table 17.

Steels *et al.* (2011) performed a double-blind, randomised, placebo-controlled trial to evaluate the efficacy of *Trigonella foenum-graecum* seed dry extract 33:1 (equivalent to 9.9 g dry herb, standardised for a minimum of 50% of furostanol saponins), 300 mg oral daily (12 weeks), in reducing menopausal symptoms. One hundred fifteen women aged 40 to 65 were included, 54 completed test group, 50 completed the placebo group. The Menopause-Specific Quality of Life (MENQOL) questionnaire, oestradiol levels and biochemical blood parameters were measured. Authors suggested that the preparation was effective for reducing vasomotor symptoms and associated menopausal symptoms.

A randomised, double-blinded, placebo-controlled trial to assess the effect of an hydroethanolic standardised extract of fenugreek seed husks DER 18:1 (w/w), rich in protodioscin, trigonellin and 4-hydroxyiosleucin, on plasma oestrogens and postmenopausal discomforts (scores of Greene Climacteric Scale, short form SF-36® and structured medical interview) was published by Begum *et al.* (2016). Eighty-eight women included, 32 completed test group, receiving 500 mg - 1000 mg per day during 90 days, 36 completed the placebo group. A significant increase in plasma oestradiol (p<0.01) (120%) and improvements on various postmenopausal discomforts and quality of life were observed. All subjects in the extract group reported reduction of hot flashes, while 32% reported no hot flashes. No adverse events were reported.

Assessor's comment:

There is no information available that fenugreek has been in medicinal use within the EU for at least ten years for the treatment of menopausal symptoms. The reported clinical studies included only a few number of patients and a limited duration of treatment according to the guideline for Hormone Replacement Therapy of Oestrogen Deficiency Symptoms in Postmenopausal Women (EMEA/CHMP/021/97) for the evaluation of symptom efficacy. Thus, the results cannot be considered as relevant for the establishment of a well-establish use monograph.

In the study by Maheshwari *et al.* (2017), an one-arm, open-labelled, multi-centre study was designed in order to evaluate the effects of the oral use of 500 mg per day (12 weeks) of *Trigonella foenum-graecum* seed extract enriched in 20% protodioscin (patented - details not given) on testosterone levels, sperm profile, sperm morphology, libido and sexual health of 50 male volunteers (age: 35 to 65 years) diagnosed with symptomatic hypogonadism. The authors reported that free testosterone level was increased by 1.47-fold with a significant decrease in abnormal sperm morphology.

Assessor's comment:

There is no information available that fenugreek has been in medicinal use within the EU for at least ten years for the treatment of symptomatic hypogonadism. The study was designed with only onearm, open-labelled, in only 50 patients receiving a fenugreek extract enriched in 20% protodioscin, and thus it does not introduce the possibility for the establishment of a well-establish use monograph.

Also, Rao *et al.* (2016) published a double-blind, randomised, placebo-controlled trial to evaluate the effect of a standardised *Trigonella foenum-graecum* seed extract on the symptoms of androgen deficiency, sexual function and serum androgen concentrations. One hundred twenty healthy men aged between 43 and 70 years of age (test group received 600 mg per day for 12 weeks) were studied for the change in the Aging Male Symptom (AMS) questionnaire, sexual function and serum testosterone. The authors reported that over time and between the active and placebo groups, significant decrease

in AMS score and improvement of sexual function were reported. Serum testosterone and free testosterone levels also increased.

Assessor's comment:

The study by Rao et al. (2016) included only healthy subjects for a short period of 12 weeks and there is no information available that fenugreek has been in medicinal use within the EU for at least ten years for treatment of the symptoms of androgen deficiency and sexual function. Thus, it does not introduce the possibility for the establishment of a well-establish use monograph.

Another open label, one arm, non-randomised, post-marketing surveillance study to access the efficacy of fenugreek seed water/ethanol extract (no details on DER) enriched in furostanolic saponins on ovarian cyst reduction was published by Swaroop *et al.* (2015). Fifty premenopausal women (age = 18-45 years), diagnosed with Polycystic Ovarian Syndrome (PCOS). The authors reported that administration for 3 consecutive months led to reduction of ovarian volume number of ovarian cysts and other related parameters, significant increase in luteinizing hormone (LH) and follicle stimulating hormone (FSH). Forty-seven subjects demonstrated reduced cyst size. Of these, 36 subjects exhibited no cyst at the completion of the study. Over the 90 days of treatment no biochemical evidence of hepatotoxicity, nephrotoxicity or cardiotoxicity. No significant change in hemogram.

Assessor's comment:

The quality of his clinical study is low (open study, one-arm, non-randomised, only 50 patients included) and does not introduce the possibility for the establishment of a well-establish use monograph for ovarian cyst reduction.

A summary of the clinical studies on humans, in menopause and sexual health is included in Table 17.

Study, reference	Study design, controls, duration	Test products (preparation, pharm. form. dose, route of admin, duration)	Number of subjects (including age, sex, drop out)	Healthy subjects or diagnosis of patients	Outcomes (primary and secondary endpoints)	Statistical analysis, quality score	Clinical relevance
Efficacy in reducing menopausal symptoms Steels <i>et al.</i> (2011)	Double-blind, randomised, placebo-control led trial	Capsule containing: 300 mg of a <i>Trigonella</i> <i>foenum-graecum</i> de husked seed dry extract 33:1, equivalent to 9.9 g dry herb, standardised for a minimum of 50% of furostanol saponins Duration: 12 weeks:	115 women aged 40 to 65 59 were allocated to test group (n=54 completed) 56 allocated to placebo group (n=50 completed)	Healthy women experiencing menopausal symptoms scoring greater than mild on the MENQOL questionnaire Included both peri- menopausal and menopausal women.	4,8 and 12 weeks: Primary endpoint: MENQOL questionnaire; Secondary endpoint: oestradiol levels and biochemical blood parameters	MENQOL score (p<0.001)	Not relevant due to the lack of qualification of peri-menopausal and menopausal status and the sample size.

Table 17: Overview of the clinical studies on humans, in menopause and sexual health

Study, reference	Study design, controls, duration	Test products (preparation, pharm. form. dose, route of admin, duration)	Number of subjects (including age, sex, drop out)	Healthy subjects or diagnosis of patients	Outcomes (primary and secondary endpoints)	Statistical analysis, quality score	Clinical relevance
Effect on plasma oestrogens and postmenopausal discomforts. Begum <i>et al.</i> (2016)	Randomised, double-blinded, placebo- controlled	500 mg - 1000 mg per day of hydroethanolic standardised extract of fenugreek seed husks, rich in protodioscin, trigonellin and 4- hydroxyiosleucin ('FenuSMART™') DER 18:1 (w/w) with respect to fenugreek husks (1 kg FHE was equivalent to 24 kg of dried fenugreek seeds) 90 days	88 women extract- treated group - n=44; drop out=12 placebo group - n=44 ; drop out=6	moderate to severe postmenopausal discomforts and poor quality of life (evidenced from the scores of Greene Climacteric Scale, short form SF-36® and structured medical interview)	Significant increase in plasma oestradiol (p<0.01) (120%) and improvements on various postmenopausal discomforts and quality of life. All subjects in the extract group reported reduction of hot flashes, 32% reported no hot flashes. Analysis of haematological and biochemical parameters revealed safety and beneficial effects on lipid	Mean ± SD. One-way analysis of variance followed by Tukey's multiple comparison test. Values of p<0.05 were considered significant.	No adverse events reported. Not relevant due to the small number of participants with a high drop-out rate in both groups (not follow ups and lack of adherence to treatment regime). The study design does not fulfil the recommendations of the current guidelines for Hormone Replacement Therapy of oestrogen Deficiency Symptoms. Tested preparation is obtained from

Study, reference	Study design, controls, duration	Test products (preparation, pharm. form. dose, route of admin, duration)	Number of subjects (including age, sex, drop out)	Healthy subjects or diagnosis of patients	Outcomes (primary and secondary endpoints)	Statistical analysis, quality score	Clinical relevance
					profile. Significant enhancement of the oestradiol levels.		husks, not representative of the whole seed.
Effects on testosterone levels, sperm profile, sperm morphology, libido and sexual health, Maheshwari <i>et</i> <i>al.</i> (2017)	One-arm, open-labelled, multi-center study	500 mg each per day after breakfast <i>Trigonella foenum- graecum</i> seed extract enriched in 20% protodioscin (patented - details not given) Duration: 12 weeks	50 male volunteers (age: 35 to 65 years)	Diagnosed with symptomatic hypogonadism	Free testosterone level: increased by 1.47-fold (p value=0.0004). Sperm count and sperm motility: significant decrease in abnormal sperm morphology. Secondary endpoints: mental alertness, mood alleviation, reflex erection and overall performance; Biochemical	Testosterone levels and sperm count: Mean; St dev. Other parameters: Wilcoxon signed-rank test	Not relevant as the product in test does not correspond to an herbal preparation since it is enriched in 20% of protodioscin, the clinical relevance concerning the effects of <i>Trigonella foenum-</i> <i>graecum</i> herbal preparations cannot be considered. Other shortcomings were observed (n=15),

Study, reference	Study design, controls, duration	Test products (preparation, pharm. form. dose, route of admin, duration)	Number of subjects (including age, sex, drop out)	Healthy subjects or diagnosis of patients	Outcomes (primary and secondary endpoints)	Statistical analysis, quality score	Clinical relevance
					parameters		duration, open study.
Effect of Trigonella foenum-graecum seed extract on the symptoms androgen deficiency, sexual function and serum androgen concentrations. Rao <i>et al.</i> (2016)	Double-blind, randomised, placebo- controlled trial	Standardised Trigonella foenum- graecum seed extract at a dose of 600 mg per day for 12 weeks	120 men aged between 43 and 70 years of age.	Healthy subjects Without erectile dysfunction, not receiving or recently received any treatment therapy for sexual disorders No prostate cancer, BPH, chronic alcohol or drug abuse.	Primary outcome: the change in the AMS questionnaire, a measure of possible androgen deficiency symptoms; Secondary outcome: measure of sexual function and serum testosterone. Others: sleep quality Significant decrease in AMS score over time and between the	Two-way ANOVA for treatment and time DISF-SR within groups ANOVA for change in pathology data Pearson Correlation Effect sizes reported as Eta squared	Not relevant as it was a small sample size and only included healthy subjects during a short period. Thus, results cannot be extrapolated to erectile dysfunction.

Study, reference	Study design, controls, duration	Test products (preparation, pharm. form. dose, route of admin, duration)	Number of subjects (including age, sex, drop out)	Healthy subjects or diagnosis of patients	Outcomes (primary and secondary endpoints)	Statistical analysis, quality score	Clinical relevance
					active and placebo groups. Sexual function improved Both total serum testosterone and free testosterone increased.		
Efficacy of fenugreek seed water/ethanol extract enriched in furostanolic saponins (Furocyst) on ovarian cyst reduction Swaroop <i>et al</i> . (2015)	Open label, one arm, non- randomised, post-marketing surveillance study	3 consecutive months No details on DER	50 premenopausa I women (age=18- 45 years, BMI=23.88 ± 4.72 kg/m2, diagnosed with PCOS)	PCOS women	Reduction of ovarian volume number of ovarian cysts and other related parameters. Significant increase in LH (p=0.045). Significant increases in FSH (p=0.010). 47 subjects demonstrated reduced cyst size. Of these, 36	Comparison of data expressed as mean ± SD with parametric and non- parametric assessments.	Open label, one- arm, non- randomised study including only 50 patients.

Study, reference	Study design, controls, duration	Test products (preparation, pharm. form. dose, route of admin, duration)	Number of subjects (including age, sex, drop out)	Healthy subjects or diagnosis of patients	Outcomes (primary and secondary endpoints)	Statistical analysis, quality score	Clinical relevance
					subjects exhibited no cyst at the completion of the study. No increases in the parameters of hepatotoxicity, nephrotoxicity or cardiotoxicity over the 90 days of treatment. No significant change in hemogram.		

Other clinical studies

Nathan *et al.*, 2014 double-blind placebo-controlled proof of concept clinical study to assess the effects of a defatted ethanol/water standardised extract (30% trigonelline) of fenugreek as adjuvant to L-dopa in the management of Parkinson disease. The extract administered orally, 300 mg, twice daily, for 6 months to patients stabilised on L-dopa therapy (men and women, aged 18-70; test group: n=25; placebo group: n=25). Efficacy outcome, based on the scores of Unified Parkinson's Disease Rating Scale and Hoehn and Yahr monitoring, showed slower rise as opposed to steep rise shown by placebo. *Trigonella* extract was found to be safe and tolerable.

Assessor's comment:

There is no information available that fenugreek has been in medicinal use within the EU for at least ten years as an adjuvant to L-Dopa in the management of Parkinson disease. The study by Nathan et al. (2014) assayed a standardised extract of fenugreek in only 50 patients and didn't show any significant improvement according to the applied scale. Thus, this study does not support the establishment of a well-establish use monograph for the treatment of Parkinson's disease.

4.3. Clinical studies in special populations (e.g. elderly and children)

No clinical data in special populations are available.

4.4. Overall conclusions on clinical pharmacology and efficacy

The only clinical data on the use of fenugreek as appetite enhancer is an observational survey in which no data are given in relation to the doses, test product and many other items. Thus, this study cannot be considered enough to support the well-established use of fenugreek for the cited indication and subsequently, the use of fenugreek relies more on a traditional use than on a well-established use.

Some studies assayed the effect of different fenugreek preparations on lipidic and glycaemic levels, menopause and sexual health, and Parkinson's disease. There is no information available that fenugreek has been in medicinal use within the EU for at least ten years for any of such conditions. Moreover, the reported clinical studies are of limited value due to several quality issues, mainly the short duration, the sample size and conditions and the study design. Thus, none of the new clinical studies introduce the possibility for the establishment of a well-establish use monograph for any of the above-cited indications.

5. Clinical Safety/Pharmacovigilance

5.1. Overview of toxicological/safety data from clinical trials in humans

Safety data on the use of fenugreek preparations is reported as part of the clinical trials conducted to assess their efficacy in different indications (see also section 5.3).

A summary of the Clinical safety data from clinical trials is included in Table 18.

Table 18:	Clinical	safetv	data	from	clinical tr	ials
Tuble 10.	Chinean	Juncey	uutu		chinear ci	iuis

Study	Herbal preparation	Number of subjects	Treatment duration	Adverse reactions
Abdel-Barry <i>et</i> <i>al.,</i> 2000	40 mg/kg aqueous extract powder in 10 ml distilled water	20 male volunteers aged 20-30 years	One single dose	Significant reduction of 14.1% in potassium levels. Increased micturition frequency or dizziness during the 24 hours after ingestion.
Sharma <i>et al.,</i> 1996a	25 g fenugreek seed powder divided into two doses at lunch and dinner	60 patients: 45 male, 15 female 30 - 70 years	24 weeks	Transient diarrhoea and flatulence.
Gupta <i>et al.,</i> 2001	1 mg per day hydroalcoholic extract of fenugreek seeds	12	2 months	Dyspepsia and mild abdominal distension.

5.2. Patient exposure

Aside from market presence and data from studies, there are no concrete data concerning patient exposure.

Pharmacovigilance data obtained from EudraVigilance database (October 2020) gave no new safety issues related to *Trigonella foenum-graecum*, semen, preparations consumption.

5.3. Adverse events, serious adverse events and deaths

The safety and efficacy of *Trigonella foenum-graecum* extract was investigated by Abdel-Barry *et al.* (2000) in 20 male volunteers aged 20-30 years. They were randomly treated with either 40 mg/kg aqueous extract powder in 10 ml distilled water or 10 ml distilled water in which coffee simulated the extract. A significant reduction of 14.1% was observed in potassium levels. No significant alteration in serum cholesterol, total serum protein and blood urea occurred. Approximately one-third experienced feelings of hunger, increased micturition frequency or dizziness during the 24 hours after ingestion. The authors concluded that the hypokalaemic effect of fenugreek merits further investigation.

Adverse events including transient diarrhoea and flatulence have been reported in studies evaluating the effects of fenugreek on blood glucose (Sharma *et al.*, 1996a).

Some patients developed dyspepsia and mild abdominal distension after fenugreek seed intake in one double blind placebo-controlled study (Gupta *et al.*, 2001) evaluating the effects of *Trigonella foenum-graecum* seeds on glycaemic control and insulin resistance. Twenty-five patients were enrolled and 12 received 1 mg per day hydro-alcoholic extract of fenugreek seeds. The other 13 patients received usual care (dietary control, exercise) and placebo. Duration of the study was 2 months.

Adverse dermatological reactions following the use of fenugreek have been reported. These are usually IgE-mediated reactions that occur after ingestion or inhalation (Minciullo *et al.*, 2017) or cross-reactions involving other plants from the legume family, such as peanut, soy, lupin, lentil, pea, bean, and chickpea (Vinje *et al.*, 2012; Che *et al.*, 2017).

Allergenicity and antigenicity of fenugreek proteins and a high rate of cross-reactivity to peanut were evidenced by Faeste *et al.* (2009). Potential allergens, characterised by MS-based proteomic analysis (Faeste *et al.*, 2010) showed homologies to major peanut allergens supporting a molecular explanation for clinical cross-reactivity.

Patil *et al.*, 1997, reported two cases of immediate allergy following inhalation and external application of fenugreek seed powder. In the first case, inhalation of the fenugreek seed powder resulted in rhinorrhoea, wheezing, and fainting. The second case was of a patient with chronic asthma who developed numbness of head, facial angioedema and wheezing after application of fenugreek paste to her scalp as a treatment for dandruff. Skin scratch test was performed with fenugreek and revealed strong sensitivity to fenugreek and chickpeas. Immunoblots demonstrated binding of specific IgE from the patient's sera with the protein from extracts between 20 kD to 70 kD bands.

One case of bronchospasm after inhalation of curry powder has been reported (Ohnuma et al., 1998).

One case report involves one patient having used fenugreek powder orally as an appetite stimulant and topically as a healing agent (Bessot *et al.,* 1996). He experienced asthma and rhinitis. The prick test performed with fenugreek powder was strongly positive.

The case reported by Sewell *et al.*, 1999 involved a five-week-old Egyptian infant, who had a 10 minute episode of unconsciousness while drinking bottled tea. He recovered spontaneously but the parents nevertheless sought medical attention. On admission, the child was in good clinical condition and alert, and the physical examination was unremarkable. The child exuded a specific aroma, and a spontaneously voided urine sample had a similar aroma. This observation initiated emergency evaluations of metabolic amino acids and organic acids to rule out maple syrup urine disease; the results of all tests were normal. The parents mentioned that they had given their child a herbal tea (Helba tea) to reduce flatulence and prevent fever. This tea contains seeds of fenugreek (*Trigonella foenum-graecum* L.). Analysis of the infant's urine by enantioselective multidimensional gas chromatography and mass spectrometry revealed the presence of sotolone, the compound responsible for the aroma in maple syrup urine disease. The tea prepared from fenugreek seeds was found to contain sotolone. Two similar reports were published earlier in 1981 (Bartley *et al.*) and 2001 (Korman *et al.*).

A publication reports one case of aplastic anaemia in a 51-year-old woman, having taken 3 dietary supplements (during a 30-day herbal program). The product packaging listed a total of 39-plant-based products, including fenugreek. The woman received transfusions of red blood cells and platelets, and was later discharged feeling well (Smereck *et al.*, 2009).

Assessor's comment:

According to these data the local application, as well as inhalation or ingestion of fenugreek have been associated with allergic reactions that are sometimes serious. Positive skin scratch test and prick test in two of the three case-reports demonstrate the responsibility of fenugreek. The risk of false diagnosis of maple syrup urine disease and potential unnecessary investigations in young children will not be introduced in the monograph as fenugreek is not recommended for children and adolescents under 18 years of age because of incomplete safety data.

Possibility of occurrence of allergic reactions after local application or ingestion was already considered in the first version of the monograph, section 4.8.: "Allergic reactions have been reported after local application (facial angioedema, wheezing) or ingestion (asthma, allergic rhinitis). The frequency is not known."

However, new data strengthen the concerns regarding the occurrence of allergic reactions and crossreactivity supporting the contraindication of the use of fenugreek in case of hypersensitivity to peanut, soya and to other plants of the Fabaceae family. In consequence, the risk of the consumption of fenugreek for persons with peanut allergy should be contraindicated in the monograph (section 4.3) in accordance with the 'Public statement on the allergenic potency of herbal medicinal products containing soya or peanut protein' (EMA/HMPC/138139/2005).

5.4. Laboratory findings

No relevant data in relation to the safety of fenugreek preparations are available.

5.5. Safety in special populations and situations

5.5.1. Use in children and adolescents

The use in children and adolescents under 18 years of age has not been established due to lack of adequate data.

5.5.2 Contraindications

Hypersensitivity to the active substance, peanut, soya, and to other plants of the Fabaceae (legume) family (see 'Public statement on the allergenic potency of herbal medicinal products containing soya or peanut protein' (EMA/HMPC/138139/2005)).

5.5.3 Special warnings and precautions for use

For oral use, due to a possible hypoglycaemic effect of fenugreek, close monitoring of glycaemic control should be considered in patients treated for diabetes mellitus.

5.5.4 Drug interactions and other forms of interaction

An interaction between fenugreek and warfarin has also been retrieved in 2 publications, including one case report (Heck *et al.*, 2000 and Lambert *et al.*, 2001). The case report involved a patient who was treated with warfarin for atrial fibrillation. During treatment, an increase in international normalised ratio (INR) and the patient's admission that she was taking a variety of natural products which included boldo and fenugreek, led the authors to suspect that some of these natural products could alter the effect of warfarin. When the patient stopped the herbal products, the INR returned to normal after 1 week. The herb-drug interaction was observed a second time, after both products were reintroduced a few days later. The immutability of this interaction to both natural products, as determined by the Naranjo algorithm, suggests a probable association between boldo-fenugreek and increased bleeding time in patients treated with warfarin. No undesirable reaction was reported during telephone discussions with the patient. Nevertheless, the authors recommend that clinicians, treating patients with anticoagulant therapy, be vigilant when patients also take herbal agents.

Assessor's comment:

Thus, data regarding a possible interaction with oral anticoagulants are definitely too sparse and the evidence is very weak.

Only one clinical case is available (Lambert et al., 2001). The patient showed slight increases of her INR values, usually comprised between 2 and 3, and which increased to 3.1 after one week of the combination and to 3.4 after two weeks.

Assessment report on Trigonella foenum-graecum L., semen EMA/HMPC/179590/2018

Firstly, these increases are to be considered slight. Moreover, the patient seemed to present with memory disorders ("It was difficult to make a precise list of OTC and natural products consumed because the patient has some memory confusion"). Moreover, the authors themselves appear disbelieving ("we did experience some difficulty in obtaining the exact name of the various OTC products the woman consumed. It is not impossible that she may have omitted or forgotten to mention some change in nutrition such as decreased consumption of food rich in vitamin K or excessive consumption of alcohol").

Taking into account all these elements, it is considered not suitable to add a specific warning in the 4.5 section of the monograph as regards this putative, poorly documented, far not proven interaction.

5.5.5 Fertility, pregnancy and lactation

Sabiri *et al.* (2013) report a prospective study conducted at the maternity Souissi in Rabat, Morocco in which data from the obstetrical and perinatal records were analysed aiming to disclose the main risk factors associated to the occurrence of congenital malformations. From the multivariate analysis of the data (n=1000 births: 960 healthy babies and 40 carriers of malformations) the consumption, during pregnancy, of medicines (antiepileptic) and/or plants, particularly fenugreek, are given, together with chronic pathology in the mother (diabetes), the family background of congenital malformation and the twin pregnancy, as the major risk factors.

The main factors involved in the occurrence of premature births in Morocco were latter assessed (Sabiri *et al.*, 2015) throughout a descriptive and analytical study conducted at the maternity Souissi in Rabat. Analysis of data from interviews with postpartum women and from obstetric and perinatal records (n=1015 births; 954 full term and 61 pre-terms babies) lead authors to conclude that the consumption during pregnancy of medicines (antiepileptic) and/or plants, particularly fenugreek, plays a significant role in increasing prematurity.

The bulletin issued by the Morocco Center for Pharmacovigilance (Skalli, 2016) reports the signalisation of 8 cases (in a period of six months) of congenital malformations coincident with the consumption of fenugreek seeds during pregnancy. Considering the severity of these events this Center for Pharmacovigilance delivered recommendations to professionals to discourage the consumption of fenugreek seeds during pregnancy and lactation.

Assessor's comment:

Non-clinical reproduction toxicity was already reported in the first assessment report and considered in the first version of the monograph, Section 4.6.: "the use is not recommended during pregnancy and lactation". Additional clinical data together with additional non-clinical studies on embryo-foetal and peri- and postnatal toxicity fenugreek have been found in the literature since the first version of the monograph was adopted.

As explained in section 3.3.5, studies in animals have shown reproductive and development toxicity including male and female fertility. However, there are no reproductive and development toxicity studies performed in accordance with current guidelines and further studies are needed. In conclusion, The use during pregnancy and lactation is not recommended. Furthermore, the use is not recommended when pregnancy is planned since male and female fertility may be affected by the treatment.

Therefore, in accordance with the EMA 'Guideline on risk assessment of medicinal products on human reproduction and lactation: from data to labelling' the following information will be added to section 4.6 of the monograph:

Assessment report on Trigonella foenum-graecum L., semen EMA/HMPC/179590/2018

"There are no or limited data from use during pregnancy and lactation. Studies in animals have shown reproductive toxicity including male and female fertility (see section 5.3 'Preclinical safety data'). The use during pregnancy and lactation and in women of childbearing potential not using contraception is not recommended."

5.5.6 Overdose

High doses (between 25 g and 100 g daily of powder of fenugreek seeds divided into two equal doses) have been reported to cause minor gastrointestinal symptoms such as diarrhoea and flatulence in 4 out of 10 cases (Sharma *et al.*, 1996a).

5.5.7 Effects on ability to drive or operate machinery or impairment of mental ability

No data available.

5.5.8 Safety in other special situations

No information available.

5.6. Overall conclusions on clinical safety

Data from the literature have enabled to identify mainly two kinds of adverse effects after fenugreek intake: digestive disorders and allergic reactions. The following undesirable effects have been included in section 4.8 of the monograph:

Oral use Gastrointestinal disorders: flatulence, diarrhoea may occur. Nervous system disorders: dizziness may occur. The frequency is not known.

Oral use and cutaneous use

Allergic reactions have been reported after local application (facial angioedema, wheezing) or ingestion (asthma, allergic rhinitis). The frequency is not known.

The risk of false diagnosis of maple syrup urine disease and potential unnecessary investigations underlined in young children will not be introduced in the monograph as fenugreek is not recommended for children and adolescents under 18 years of age because of incomplete safety data.

Patients with known allergy to peanut protein carry an enhanced risk for severe reactions to fenugreek preparations. The risk of the consumption of fenugreek for persons with peanut allergy should be contraindicated in the monograph (section 4.3) in accordance with the 'Public statement on the allergenic potency of herbal medicinal products containing soya or peanut protein' (EMA/HMPC/138139/2005).

Taking into account all the elements mentioned above regarding the potential risk of interaction between fenugreek and anticoagulants, it is considered not suitable to add a specific warning in the 4.5 section as regards this putative, poorly documented, so far not proven interaction.

Non-clinical reproduction toxicity was already reported in the first assessment report and considered in the first version of the monograph. Additional clinical data together with additional non-clinical studies on embryo-foetal and peri- and postnatal toxicity fenugreek have been found in the literature since the first version of the monograph was adopted. Therefore, in accordance with the EMA 'Guideline on risk

assessment of medicinal products on human reproduction and lactation: from data to labelling' the following information will be added to section 4.6 of the monograph:

"There are no or limited data from use during pregnancy and lactation. Studies in animals have shown reproductive toxicity including male and female fertility (see section 5.3 'Preclinical safety data'). The use during pregnancy and lactation and in women of childbearing potential not using contraception is not recommended."

6. Overall conclusions (benefit-risk assessment)

Fenugreek preparations are reported as being on the EU market for more than 30 years in products for oral use in lack of appetite and in products for external use for skin inflammation treatment. Only the preparations which have been used for at least 30 years are described in the monograph.

Several clinical studies have been performed with different fenugreek preparations. Nevertheless, when scrutinising the published literature results do not substantiate the clinical efficacy of fenugreek to stimulate appetite as in the first indication, it has to be acknowledged that the data are limited, studies are not performed according to the current guidelines and of show poor relevance in adults.

The clinical data are of poor relevance in adolescents. In children, no efficacy data are available, clinical experience is sparse and mainly through case reports of adverse events. The use in children and adolescents under 18 years of age is not recommended because of incomplete data on safety.

Consequently, on the basis of the pharmacological and clinical data, HMPC concluded that a wellestablished use indication cannot be established for the European Union herbal monograph on *Trigonella foenum-graecum* L. semen. Based on the data on its long-standing use in the European Union and on the available bibliographic references, the use for more than 30 years and acceptable safety are documented for *Trigonella foenum-graecum* L. semen for the following preparations a) *for oral use*: herbal substance, comminuted herbal substance and powdered herbal substance; dry extract (DER 4:1), extraction solvent: ethanol 20% V/V; soft extract (DER 5-6:1), extraction solvent: ethanol 60% V/V; *for cutaneous use*: herbal substance.

In conclusion, the above-cited fenugreek preparations can be accepted as traditional herbal medicinal products for the following indication:

Indication 1): Traditional herbal medicinal product used for temporary loss of appetite (oral use).

The herbal substance and the powdered herbal substance can be accepted as traditional herbal medicinal products for the following indication:

Indication 2): Traditional herbal medicinal product used for the symptomatic treatment of minor inflammations of the skin (cutaneous use).

As regards the safety profile of fenugreek, it is mainly characterised by digestive disorders and allergic reactions.

Studies have shown reproductive toxicity including male and female fertility. The use during pregnancy and lactation and in women of childbearing potential not using contraception is not recommended.

Warnings regarding the use of the herbal substance or preparations of fenugreek by patients treated for diabetes mellitus should be included in the monograph.

No constituent with known therapeutic activity or active marker can be recognised by the HMPC.

Tests on genotoxicity have been performed only with undefined fenugreek extracts; these data cannot be extrapolated to the herbal substance or to the preparations considered in the monograph (dry

extract (DER 4:1), extraction solvent: ethanol 20% V/V and soft extract (DER 5-6:1), extraction solvent: ethanol 60% V/V). Therefore, a European Union list entry cannot be supported due to lack of adequate data on genotoxicity.

Annexes

List of references