A255 Sesquiterpene lactones from the aerial parts of Centaurea spinosa and their cytotoxic/cytostatic activity against human cell lines in vitro

V. Saroglou^a, A. Karioti^a, K. Dimas^b, C. Demetzos^a and H. Skaltsa^a

^a Department of Pharmacognosy & Chemistry of Natural Products, School of Pharmacy, University of Athens, Panepistimiopolis, Zografou, GR – 157 71, Athens, Greece. ^b Papanikolaou Research Center of Oncology. Department of Biochemistry, St. Savvas Hospital, GR – 115 22, Athens, Greece.

Continuing our research on the chemical constituents from the aerial parts of Greek Centaurea sp., we report here the isolation and identification of sesquiterpene lactones **1-6** from *C. spinosa* L., a species belonging to the section *Acrolophus* (Cass.) L. (1). The isolation was proceeded according to the Bohlmann isolation method (2). The structures of the sesquiterpene lactones **1-5** were elucidated by spectroscopic methods, particularly high-field NMR spectroscopy. Compound **1**, 8α -O-(3,4-dihydroxy-2-methylenebutanoyloxy) sonchucarpolide [= 4-epi-malacitenolide], is a new naturally occurring eudesmanolide. Besides compound **1**, four known sesquiterpene lactones were isolated, namely 8α -O-(3,4-dihydroxy-2-methylenebutanoyloxy)-15-oxo-5,7 α H,6 β H-eleman-1,3,11(13)-trien-6,12-olide (**2**), methyl 8α -O-(3,4-dihydroxy-2-methylenebutanoyloxy)-6 α ,15-dihydroxy-elema-1,3,11(13)-trien-12-oate (**3**), 8-O-(4-acetoxy-5-hydroxyageloy)]salotenolide (**4**), as well as the germacranolides cnicin (**5**) and 4'-acetylcnicin (**6**), major constituents of the plant. Cytotoxic/cytostatic activity of the fractions, as well as of the isolated compounds **2**, **5** and **6** were found to be the most active.

References: 1. Georgiadis Th. (1980), Contribution à l'étude phylogénétique du genre Centaurea L. (Sectio Acrolophus (Cass.) DC.) en Grèce. Thesis, Université de Provence – Aix Marseille I, 286 pp. **2.** Bohlmann F. et al. (1984), Phytochemistry 23: 1979-88. **3.** Maswadeh H. et al. (2000) Anticancer Res. 20: 4385-4390.

A256 Herbal remedies traditionally used against malaria: phytochemical investigations of Microglossa pyrifolia (Asteraceae)

I. Köhler^a, K. Jenett–Siems^a, C. Kraft^a, K. Siems^b, D. Abbiw^c, U. Bienzle^d and E. Eich^a

^a Institut für Pharmazie (Pharmazeutische Biologie), Freie Universität Berlin, Königin–Luise–Strasse 2-4, D–14195 Berlin, Germany. ^b AnalytiCon Discovery GmbH, D-14473 Potsdam, Germany. ^c Department of Botany, University Legon-Accra, Accra, Ghana. ^d Institut für Tropenmedizin, Medizinische Fakultät Charité der Humboldt–Universität zu Berlin, D-14050 Berlin, Germany.

Microglossa pyrifolia (Lam.) Kuntze (Asteraceae) is a traditional plant remedy, which is used against fever and malaria in Ghana (1). Continuing our bioassay–guided fractionation of *M. pyrifolia* (2), we isolated another five compounds from active fractions: the furanoditerpenes (+)–strictic acid, (+)–hardwickiic acid, 10α –nidoresedic acid, 10β –nidoresedic acid, and the new geranylgeraniol derivative 1–acetyl–6E–geranylgeraniol–19–oic acid **1**. Evaluation of the antiplasmodial activity in our *in vitro* test system against P. *falciparum* revealed the following results: the previously isolated 6E-geranylgeraniol-19-oic-acid **2** (IC₅₀ values: 4.3 µg/ml [PoW], 5.2 µg/ml [Dd2]), and the semi–synthetic derivative 19–hydroxy–6E–geranylgeraniol **3** (IC₅₀ values: 5.7 µg/ml [PoW], 16.2 µg/ml [Dd2]) showed moderate activity, whereas the new natural compound 1–acetyl–6E–geranyl–geraniol–19–oic acid **1** was inactive.

References: 1. Dokosi, O.B. (1998) Herbs of Ghana, Ghana Universities Press Accra, 313–314. 2. Köhler, I. et al. (2001) International Symposium of the Phytochemical Society of Europe, 12.–14.9.2001, Lausanne, Switzerland.